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Prediction of Failure Load of R/C Beams Strengthened with
FRP Plate Due to Stress Concentration at the Plate End

Epoxy-bonding a composite plate to the tension face is an effective tech-
nique for repair and retrofit of reinforced concrete beams. Experiments
have indicated local failure of the concrete layer between the plate and lon-
gitudinal reinforcement in retrofitted beams. This mode of failure is caused
by local stress concentration at the plate end as well as at the flexural
cracks. This paper presents a method for calculating shear and normal
stress concentration at the cutoff point of the plate. This method has been
developed based on linear elastic behavior of the materials. The effect of
the large flexural cracks along the beam has also been investigated. The
model has been used to find the shear stress concentration at these cracks.
The predicted results have been compared to both finite element method
and experimental results. The analytical models provide closed form solu-
tions for calculating stresses at the plate ends that can easily be incorpo-
rated into design equations.

Keywords: analytical modeling; epoxy; fiber composites; interfacial stress;
local failure; peeling failure; plating; repair; retrofit; stress concentration.

INTRODUCTION

In recent years, repair and retrofit of existing structures have
been among the most important challenges in civil engineer-
ing. The primary reasons for strengthening of structures in-
clude: upgrading of resistance to withstand underestimated
loads; increasing the load-carrying capacity for higher permit
loads; eliminating premature failure due to inadequate detail-
ing; restoring lost load carrying capacity due to corrosion or
other types of degradation caused by aging, etc. Different
techniques have been developed to retrofit a variety of struc-
tural deficiencies. For concrete columns, lateral confinement
has been provided by means of steel jackets or fiber-rein-
forced-plastic (FRP) wraps."? For concrete beams, flexural
and shear strengthening have been performed by epoxy bond-
ing steel or FRP plates to the tension face and the web of the
beams, as shown in Fig. 1. Steel plates have been used in many
countries for flexural strengthening of concrete beams for sev-
eral years.*> The main disadvantage of using steel plate is cor-
rosion of steel which adversely affects the bond at the steel
concrete interface. The problem is more severe for bridges
where deicing chemicals are commonly used during cold sea-
sons. In order to eliminate the corrosion problem, steel plate
has been replaced by FRP plate.
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Fiber reinforced plastic materials have been used success-
fully in the aerospace industry for several decades. These
materials can be made from different types of fibers and ma-
trices.® FRP plates are not prone to electrochemical corro-
sion as is steel. Furthermore, they can be formed, fabricated,
and bonded easier than steel plates. FRPs generally behave
linearly elastic to failure. The mechanical properties of FRP
vary with the type and orientation of the reinforcing fibers.
Therefore, the fibers can be placed in any orientation to max-
imize the strength in a desired direction. In this paper, only
unidirectional FRP is used for developing the analytical
models.

In strengthening reinforced concrete beams with FRP
plates, different failure modes have been reported.”- These
modes can be divided into two general categories of “flexur-
al” and “local” failures. “Flexural failure” is defined as con-
crete crushing in compression or plate rupturing in tension.
“Local failure” is defined as the peeling of the FRP plate at
the location of high interfacial stresses and shear failure of
the concrete layer between the plate and the longitudinal re-
inforcement, as shown in Fig. 2. Flexural failure has been al-
ready investigated analytically.® This paper concentrates on
analytical modeling of “local failure.” Since in many cases
the failure of retrofitted beams is governed by the “local”
failure, the investigation of the stresses at the concrete/FRP
interface is an important issue in the analysis and design of
this type of beam.

Equations are presented here for calculating the shear and
normal interfacial stresses. In order to verify this method, the
results are compared to those of the finite element and exper-
imental studies. Although the method has been developed
based on uncracked beams, its validity for cracked beams
has also been investigated.
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RESEARCH SIGNIFICANCE

In flexural strengthening of reinforced concrete beams
with epoxy-bonded FRP plates, local failure in the concrete
layer between the steel reinforcement and the composite
plate has been observed in experiments. This type of failure
prevents the strengthened beam from reaching its ultimate
flexural capacity, and therefore it must be included in design
considerations. This failure mode is unique to plated beams
and is caused by shear and normal stress concentrations at
the plate end and at the flexural cracks present along the
beam. Closed form solutions of stress concentrations are re-
quired in developing design guidelines for strengthening re-
inforced concrete beams with FRP plates.

ANALYTICAL MODELS

In this section, analytical models are developed for pre-
dicting the shear and normal stresses at the concrete/FRP in-
terface. The following assumptions are made: linear elastic
and isotropic behavior for FRP, epoxy, concrete, and steel
reinforcement; complete composite action between plate and
concrete (no slip); and linear strain distribution through the
full depth of the section. The above assumptions do not over-
simplify the behavior of this system since the plate cutoff
point is usually taken near the inflection or points of zero
moments where the normal stresses are generally low and
justify the assumptions of linear elastic for the materials.

Shear stress

The interfacial shear stress between FRP plate and epoxy
can be calculated by considering the equilibrium of an infin-
itesimal part of the FRP plate, as shown in Fig. 3. In this fig-
ure, T(x) and f,(x) are shear and normal stresses, respectively.
The shear stress can be defined by:

df (x)
dx v )

T(x) =

where f,(x) = tensile stress in FRP plate; and 7, = thickness
of plate.

Fig. 1—Flexural and shear strengthening of reinforced con-
crete beams

Fig. 2—Local failure in reinforced concrete beams strength-
ened with FRP plates
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Fig. 3—Stresses acting on FRP plate

Assuming linear elastic behavior, Eq. (1) can be rewritten
as:

wmv_@@udg @)

dx ~ \d " dx
where u and v = horizontal and vertical displacements in the
adhesive layer, respectively; G, = shear modulus of elastici-
ty of the adhesive layer; x and y = measured along the longi-
tudinal axis and perpendicular to the longitudinal axis of
FRP plate, respectively.

Differentiating Eq. (2) with respect to x, results in:

d’fp(x) _ G du  dv
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The relationship between the bending moment, M, and the
flexural deflection is given by:
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where E . = elastic modulus of concrete in tension; and /. =
moment of inertia of transformed section based on concrete.
Furthermore, d’u/dxdy can be expressed as:
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where €, and €. = interfacial strains in the lower and upper
faces of the epoxy layer; and ¢, = thickness of epoxy layer.
Therefore, Eq. (2) can be written as:

dzf,,(x) _ @(ep €. M j (©6)

—_— e — + [
2
dx” ,p t L, E('Il r

a

The magnitude of the third term in the parentheses is rela-
tively small as compared to the other terms and therefore it
can be neglected. Eq. (6) is then reduced to:
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where €, = f(x)/E, and €. = f(x)/E, assuming uncracked
section and using the corresponding stress-strain relation-
ships for concrete and FRP plate; E, = elastic modulus of
plate; f.(x) = tensile stress in the bottom of the concrete
beam. The governing differential equation for the tensile
stress in the plate can be expressed as:
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The solution of the above equation is given by:

f})(x) =C, sinh(JAx) + Czcosh(ﬁx) + bl)c2 +byx+by (9)
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In developing the above solution, the origin of x has been as-
sumed at the cutoff point of the plate. Furthermore, bending
moment can be expressed by:

M(xy) = a1x02+a2x0+a3 (10)

where the origin of x is arbitrary, and can be assumed at
any convenient point at a distance L, from the cutoff point.
In other words, xy = x + L,; y = distance from neutral axis
of the strengthened section to center of FRP plate; and C|,
C, = integration constants.

Substituting the expression for f,(x) given by Eq. (9) into
Eq. (1), results in:

T(x) = 1,[C, JAcosh(JAx) + CyJAsinh(JAx) +2bx+b,] (1)

Constants of integration C| and C, are evaluated using the
following boundary conditions: the first boundary condition
is evaluated at x = O where the plate ends. At this point
fp(x) = 0. The second boundary condition is evaluated at the
point where shear force in the beam is zero, i.e.:

df ()
dx

T(L,) =0 or =0

where L = distance to the point of zero shear force measured
from the plate end.

Using the above boundary conditions the following ex-
pressions for C| and C, can be obtained:

byJAsinh(JAL) - 2b L, ~ b,

C = (12
I A/;\cosh(ﬁL;\) )

A parametric study of variables in Eq. (12) revealed that
generally, sinh( A/ZLX ) and cosh( A/f_\L“_) are equal and have
very large values compared to the other terms in the numer-
ator. Therefore, C| can be simplified to:

Cl = b3
Using Cy and C, in Eq. (11), the shear stress is expressed by:

T(x) = 1,[03/JAcosh(JAx) = by JAsinh (JAx) +2bx+ by] (13)

The maximum shear stress occurs at the cutoff point (x = 0):

Tnax = [[7(b3“/g+b2) (]4)
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Fig. 4—Normal stresses acting on the isolated concrete and
plate beams

Normal (peeling) stress

Considering concrete beam and FRP plate as two isolated
beams (“concrete beam” and “plate beam”) connected to-
gether by the adhesive layer as shown in Fig. 4, the fourth or-
der differential equation for each beam can be expressed as:

4
dv, i
-Ed.—F = gq-b,f,(x) (15)
dx
d4v,,
~E,l,—F = b, f,(x) (16)
dx

where v, and v, = deflection of FRP plate and concrete
beam, respectively; /,, /. = moment of inertia of plate and
concrete beam: b, = width of FRP plate; g = distributed load
on the concrete beam; and f,,(x) = normal stress in the epoxy
layer. Considering deformation in the epoxy layer, f,(x) can
be expressed as:

f;l(‘) = K”(VP*V(,) (17)
where K, = E/t,; E, = modulus of elasticity of adhesive; and

1, = thickness of adhesive.
Differentiating Eq. (17) four times results in:

— - (18)
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Solving Eq. (15) and (16) for d*v,./dx* and d“lvl,/d)c4 and
substituting the corresponding values in Eq. (18) gives the
governing differential equation of the normal stress:

4

df;l(x) n Kll

—+t=b f,(X) = =7 ¢ (19)
dx4 E,,IP r E.l.

The solution of this fourth order linear differential equation
is the summation of the homogeneous and particular solu-
tions as given below:

F£.(x) = e P (D cos(Bx) + Dasin(x)] (20)
El
+ ™[ Dy cos (Bx) + D,sin(Bx) ] +’7q,flll

where B = (K,b,/4E,],)"*; and D, to D, = constants of in-
tegration. The term b,/E I is relatively small compared to
b,/E,I, and has been neglected in Eq. (19). For large values
of x, i.e., for the points far from the cutoff point, the normal
stress and its derivatives approach zero. Since B is a positive
number, the coefficient of eBX must be zero to satisty the

above condition, that is, D3 = Dy = 0. Eq. (20) is reduced to:

E, I
fi(x) = e D, cos(Bx) + Dssin(Bx)] + ILI L 21)
DpE,

Constants of integration D and D, are calculated using
the appropriate force boundary conditions at the plate cutoff
point. Differentiating Eq. (17) results in:

2 2 2
df (x dv, dv,.
L A A (22)
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Considering the isolated “concrete beam™ and the “plate
beam” and using the moment-curvature relationships for
these beams, Eq. (22) can be rewritten as:
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M (x) (23)

where Mp(x) and M_.(x) = bending moments in the “plate
beam” and “concrete beam,” respectively. Differentiating
Eq. (22) once more, and substituting third derivatives of dis-
placements by the corresponding shear forces results in:

Ifx K, V- Ky o
= =—V (x) - V.(x
dx3 Eplp / E.I

where: V,,(x) and V,(x) = shear forces in the plate and con-
crete beams, respectively. The effect of the interfacial shear
stress must be considered in defining the bending moment
and shear forces in the isolated beams. Shear stress given by
Eq. (13) multiplied by the width of the plate can be assumed
as a distributed load per unit length (shear flow) along the in-
terface of each of the beams with the adhesive layer, as
shown in Fig. 5(a). The static equivalents of these distributed
loads at the centroid of the beams are distributed loads plus
distributed moments as shown in Fig. 5(b). Therefore, the
equation of bending moment in concrete and plate beams due



to this distributed load or shear flow at the interface can be
written as:

M (x) = =b,v.1,[bysinh(JAx) = bycosh(JAX) + b X" + bax + by] (25)

M, (x) = _h,,%” [, sinh(JAx) — bycosh(JAx) + b x" + box + by] (26)

where Mp’(x) and M *(x) = bending moments due to shear
flow at the interface of concrete and plate beams, respective-
ly. At the end of the plate where x = 0; both of the above mo-
ments are zero. Therefore, the bending moment in each of
the beams is only due to the externally applied loads, and is
expressed by:

M(' = 0
27
M, =0 27)

where M, = bending moment in the concrete beam at the
plate end due to externally applied load. In the above expres-
sions, it is assumed that the external load is applied to the
concrete beam only.

Differentiating Eq. (25) and (26), and substituting x = 0,
results in the shear forces in the isolated beams at the plate
end:

s

V. = —b,y.t,(b3JA + by) (28)

1

V,' = —5b,ty(bsJA+by) (29)

where V. and V,* = shear forces at the plate end, in the con-
crete and plate beams due to interfacial shear stresses, re-
spectively. The total shear force in the concrete and plate
beams are calculated as:

(30)

where V,, = shear force in the concrete beam at the plate end
due to externally applied loads. Here, again it is assumed that
the concrete beam alone takes the full shear due to the exter-
nally applied loads. Inserting the corresponding values given
by Eq. (27) and (30) into the right side of Eq. (23) and (24),
D, and D, are obtained:
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Fig. 5—(a) Shear flow acting on the isolated beams; (b)
Equivalent system of distributed forces acting at the center-
line of the isolated beams
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Fig. 6—Interfacial stresses acting on the isolated beams

Considering the fact that e P approaches zero for large val-
ues of x, the maximum normal stress occurs at the cutoff
point and is expressed by:

€33)

n

_ K, (i Ve BMO) qE,1,
max 2B3 EPII' E('Il' prL'IL'

Eq. (14) and (33) express the maximum shear and normal in-
terfacial stresses, respectively, and can provide the necessary
tools for designing strengthened beam against local failure.
The parameters in these equations can be simply calculated
based on mechanics of materials.

Effect of shear stress concentration on flexural
stresses

In order to highlight the effect of interfacial shear stresses
at the concrete/plate interface on the flexural stresses in the
concrete beam, the “plate beam” and the “concrete beam”
are considered without externally applied loads but with self
equilibriating interfacial shear stresses as shown in Fig. 6.

Isolating elements ABCD from the “concrete beam” and
element A’'B’C’D’ from the “plate beam,” as shown in
Fig. 7(a), one can see that for equilibrium of these elements,
generally the existence of internal forces shown on Fig. 7(b)
is necessary.
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Fig. 7—(a) Isolated elements of the beams; (b) Internal
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beam

Writing the equilibrium equation for elements in Fig. 7(b)
results in:

dM, _ 4
I - (Ve=1bpye) 34)
am t

po_ _p L
i (VP rbpz) (35)

The strengthened beam, where the plate is attached to the
concrete is shown in Fig. 8. Considering the equilibrium of
this beam, the figure shows that when no external load is ap-
plied to the beam the internal forces acting on any element of
the beam will be zero. In other words, the superposition of
the internal forces of the concrete beam and the plate beam
should add up to zero at any location along the beam, that is:

M,+M, =0 (36)
V,+V, =0 (37)
Differentiating Eq. (36) results in:
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Fig. 9—Internal forces induced by the shear stress concen-
tration at the cutoff point

Considering Eq. (34) and (35), one may write:

dM

”dMva—b‘t” 39
_dx_+zv—_( ,+ V) =1 ,,()c+§) (39)

According to Eq. (37) and (38), the left-hand side of the
above equation is zero, so must be the right-hand side. This
can only be true if T is zero. This is a trivial solution of the
above equation, and is not of concern in this analysis. The
other approach to look at this term is as an error term which
must be eliminated. This elimination is performed analyti-
cally by imposing a shear force at the cutoff point in the op-
posite direction. However, this free body diagram will not be
in equilibrium unless we have a set of forces as shown in
Fig. 9. This requires a moment at the cross section expressed
by:

_ t
— P
M, = Lorbp(chr z) (40)

In Eq. (40), the value of T is obtained from Eq. (14), and
t,/2 can be neglected since its value is small compared to .
Therefore:

M, = L,t,b,y.(bssJA+by) (41)

This moment is characteristic of the cutoff point in plated
beam due to high shear stresses at this location. The magni-
tude of this moment rapidly decreases as the distance from
the cutoff point increases. This moment is added to the mo-



ment from externally applied loads for the flexural design of
the section at the cutoff point.

Effect of flexural cracks

Cracks play a significant role in the redistribution of the
shear stresses. The same procedure to calculate shear stress-
es can be followed when cracks are present along the beam
as shown in Fig. 10. Using Eq. (11) between two successive
cracks, and assuming axial stresses in the plate at crack loca-
tions as known boundary conditions, constants Cy and G,
can be calculated:

b 4 byxy + by —f) + Ca(=byx, = byx, — by + £;)

c, , _
$1Ca=$:C

(42)

_ - Cn~§2 _h]xlz —byx; = by

. ] “3)
C,

where x; and x, = coordinates of two successive cracks; f;
and f, = longitudinal stress of plate at the location of the
cracks; §, = sinh(JAx,) ; S) = sinh(JAx,) ; C = cosh(JfAx,);
and C; = cosh(J/Ax,).

Defining the origin of x at the first crack, Eq. (42) is re-
duced to:

b\~ byl by + fo - Cof + Cab,
$:

C, (44)

where [ = distance between cracks. Generally, T, and 5, are
equal and have large values, so the final expression for the
shear stress at the crack can be simplified to:

Tmax = lp[b2+ A/A(bB _f])] (45)

Therefore, by knowing the longitudinal stress in the FRP
plate, one can find the shear stress in the adhesive layer at the
same location. Considering the fact that due to opening of the
cracks usually there is debonding in the adhesive layer at the
crack, Eq. (45) is an important equation from the design
point of view. In this equation, f| is predominant compared
to the other terms. In other words, any approximation used in
defining the tensile stress at the bottom of the concrete beam
such as linear elastic behavior, has negligible effect and can
be ignored.

VERIFICATION OF THE METHOD

The method is verified by comparing it to both finite ele-
ment analysis and experimental results. Several researchers
have reported local failure in concrete beams strengthened
with FRP plates.”® In this study, the beams tested by Saadat-
manesh and Ehsani® were analyzed by using both the method
described in this paper and the finite element method. For
brevity, only the results of one of these beams which has
failed due to local failure of concrete at the cutoff point is
discussed here. The general view and also the cross section
of this beam are shown in Fig. 11.

Fig. 10—Location of the cracks in the concrete beam
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Fig. 11—General view and cross section of the test beam
(Note: 1 mm = 0.0394 in.)

Table 1—Mechanical properties of materials used
in the test beam

Modulus of elasticity,

Material MPa Poisson’s ratio
Concrete 27,990 0.18
Steel 200,000 0.3
FRP 37,230 0.35
Adhesive 814 0.37

Note: 1 MPa = 0.145 ksi

The mechanical properties of the materials used in the
construction of the test beam are listed in Table 1.

In order to compare the results of the present method with
the finite element and experimental results, it is first neces-
sary to calculate the shear and normal stresses at the cutoff
point for the test beam using the present method.



Fig. 12—General mesh definition of the test beam

Equation (13) was used to predict the interfacial shear
stress. Based on an elastic analysis, which is reasonable for
the end regions of the beam, the cross-sectional properties
were calculated as:

=232 mm (9.13in.), I,, = 1.77 x 10° mm* (4252 in.%)

The expression for the bending moment at the ultimate load
of 100 kN (22.48 kips) is given by:

M(x,) = 100,000 x,

where the origin of x,, is defined at the left support. There-
fore, the coefficients of the polynomial given in Eq. (10) are:

a; =0, ay, =100,000, and a3 =0
Using Eq. (9) the following parameters are calculated:
b;=0,by=0.0174, and b3 = 2.70
Subsequently, C; and C, are obtained as:
C,=2.70, and C, =-2.70

Knowing G, =297 MPa (43 ksi), 7, = 1.5 mm (0.06 in.), and
= 6 mm (0.236 in.), the constant A is calculated:

A=896x10"*

The equation of shear stress distribution along the interface
can now be expressed by:

T(x) = 0.4825 cosh (0.0298 x) — 0.4825 sinh (0.0298x)
+0.1045

and the tensile stress in the FRP plate can be written as:

fp(x) = 2.7 sinh (0.0298x) — 2.7 cosh (0.0298x)
+0.0174x + 2.7

The maximum shear stress at the cutoff point is calculated by
evaluating shear stress at x = 0: 7,, = 0.587 MPa
(0.085 ksi).

The cross-sectional properties of “concrete beam” and
“plate beam” are as follows:

3. =227.5 mm (8.96 in.), I, = 1.61 x 10° mm* (3868 in.%)

3, =3 mm (0.118 in.), I, = 2736 mm* (0.00657 in.")

The following can also be obtained:

K, = 542.3 MPa/mm (1997 ksi/in.),
B=0.1192 mm™' (3.028 in.h.

Therefore, using Eq. (30), (31), and (32) one can obtain the
following values:

V. =79.667 kN (17.91 kips); V,,
= -0.268 kN (0.062 kips);

D, =-0.427 MPa (0.062 ksi); D, = 0.00656 MPa
(0.000951 ksi).

The equation for the normal stress is obtained as:

[0 = e 01192x [_0 427¢0s(0.1192x) + 0.00656
sin(0.1192x)]

At the cutoff point (x = 0) the maximum value of normal
stress is obtained as:

frumax = —0.427 MPa (0.062 kst)

The negative sign shows tensile stress.

Comparison with finite element analysis
The “ABAQUS” Finite Element program was also used to

analyze the test beam (ABAQUS, Version 5.4, 1994).

Due to the symmetry of the beam, only half of the beam
was analyzed with appropriate constraints at the centerline,
as shown in Fig. 12. Rebars were modeled as one-dimen-
sional bar elements. Different meshes were used for the anal-
ysis and the results of three typical cases are discussed here.

Case I: 4-node elements with one layer of elements in the
adhesive.

Case II: 8-node serendipity elements with one layer of el-
ements in the adhesive.

Case I1I: 8-node serendipity elements with five layers of
elements in the adhesive.

The mesh definition around the cutoff point for Case IIl is
shown in Fig. 13.

The results of the finite element analysis together with the
closed form solution (present method) for interfacial shear
and normal stresses as well as the longitudinal stresses of the
plate, are shown in Fig. 14(a), (b), and (c), respectively. It
can be concluded that only a very fine mesh can show the de-
scending branch in the shear stress very close to the cutoff
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stress of the plate (Note: 1 MPa = 0.145 ksi; 1 mm = 0.0394 in.)

point. However, the maximum shear stress predicted by this
method is in good agreement to the results of the finite ele-
ment analysis. It is also concluded that shear stress concen-
tration at the cutoff point rapidly vanishes when moving
toward the center of the beam.

The results of the normal stress show slightly more devia-
tion from the finite element results at the cutoff point. How-
ever, at the location of maximum stresses, which is used for
design, the agreement between the finite element results and
the present method is good as can be seen from Fig. 15.
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Table 2—Variation of stresses due to orthotropic
behavior of the plate

Normalized normal
stress (f,, / f;)

Normalized shear
stress (T, / 1))

Normalized shear
modulus (G, / Gj)

0.1 0.942 1.07
0.2 ‘ 0.967 1.10
0.4 0.984 7 1.08
0.6 0.993 1.05

0.8 0.998 1.03
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Fig. 16—Mesh definition and the location of the cracks

Effect of flexural cracks—Cracking is one of the major
characteristics of concrete that affects analysis and design
procedures. In order to investigate the effect of large flexural
cracks on the distribution of stresses in a beam strengthened
with FRP plates, the beam was analyzed assuming that two
cracks were present. Mesh definition and location of the pre-
defined flexural cracks are shown in Fig. 16.

Eight-node elements were used, and intermediate nodes of
the elements around the crack tip were defined at quarter
points to simulate the stress singularity at this point.' The
average plate tensile stress at cracks 1 and 2 was 700 MPa
(101.52 ksi) and 726 MPa (105.29 ksi) based on the finite el-
ement analysis. Using Eq. (44), the calculated shear stresses
are 112.50 (16.32 ksi) and 116.84 MPa (16.95 ksi), respec-
tively. The maximum shear stress in the adhesive layer
around these cracks obtained by the finite element analysis
was 105 MPa (15.23 ksi) and 112 MPa (16.24 ksi), which
shows a good agreement. Finite element results also showed
that there is compressive normal stress accompanied by
shear stress, but normal stress does not show high concentra-
tion like that at the cutoff point. According to this analysis
the increase in the shear stress at the cutoff point due to
cracks was negligible.

Parametric study for isotropic and orthotropic behaviors
of FRP plate—A parametric study was carried out to inves-
tigate the effect of unisotropy of the plate on the shear and
normal stress concentrations. The test beam had unidirec-

tional FRP plate which results in orthotropic behavior of the
plate. This study showed that the variation of elastic modulus
in transverse direction does not have a significant effect on
shear and normal stresses. The variation of the shear modu-
lus of elasticity, however, can somewhat change these stress-
es as shown in Table 2. Assuming isotropic behavior for the
plate (based on longitudinal direction) results in an upper
bond on the magnitude of shear stress which is a conserva-
tive solution. The variation of normalized shear and normal
stress (with respect to isotropic behavior) against normalized
shear modulus (with respect to isotropic case) are shown in
Table 2. Where in this table subscripts / and o refer to isotro-
pic and orthotropic.

Comparison with experimental results

According to the method presented in this paper, the shear
and normal stresses at the cutoff point of the test beam are
calculated as 0.586 MPa (0.085 ksi) and 0.427 MPa
(0.062 ksi), respectively. The flexural stress in the concrete
at the end of the plate, considering the increase in moment,
M,,, is calculated as 2.545 MPa (0.369 ksi). Using these val-
ues, the principal stresses are obtained as 2.696 MPa
(0.391 ksi) and 0.276 MPa (0.040 ksi), respectively. A biax-
ial failure model for concrete!"!? shows a tensile strength of
3.11 MPa (0.451 ksi) for the concrete used in making the test
beam (f.= 3432 MPa). Comparing these results
(2.696 MPa vs. 3.11 MPa) shows 13 percent difference



which is due to the approximations made in the model as
well as the linear elastic behavior assumed in the method
presented in this paper.

CONCLUSIONS

Shear and normal stress concentrations near the cutoff
point of the FRP plate and also flexural cracks must be con-
sidered in the design of reinforced concrete beams strength-
ened with epoxy bonded FRP plates. These stresses may lead
to failure modes such as peeling and debonding of the plate
or local failure in the concrete layer between the FRP plate
and longitudinal reinforcements of the beam. The method
presented in this paper can be used to predict the distribution
of shear and normal stress at the interface of the plate and the
adhesive throughout the entire length of the plate and partic-
ularly the location of the cutoff point. The maximum values
of these stresses which are important from the design point
of view are given by the following simple equations:

Tax = tp(b,?“/g + b2)

-fn, max

K” ( Vp V(' + BM()) qEI7]p
= —| =— - +
2 [33 E[)I]? E('I(' b,) E('I(‘

The method has been developed based on linear elastic be-
havior of the concrete. However, the effect of flexural cracks
has been investigated and included in this study. The effect
of anisotropic behavior of FRP plate on stress distribution
has been studied as well. It was concluded that the isotropic
assumption for the behavior of FRP plate, used in developing
this method, is acceptable. The method was applied to a
beam that had been tested and had failed due to local failure
of the concrete layer between the FRP plate and longitudinal
reinforcement. The results of the method presented in this
paper indicate a good agreement with both finite element and
experimental results.

NOTATION
A = parameter used in shear/normal stress equations
a3 = coefficient of bending moment polynomial
b, = width of FRP plate
b3 = parameters used in shear/normal stress equations
Cy, = integration constants
Cy, = coefficient related to crack location
Dy = integration constants
E, = elastic modulus of epoxy (adhesive)
E. = elastic modulus of concrete
E, = elastic modulus of FRP plate
fe = tensile stress in the concrete beam
fu = normal stress in the epoxy layer
fp = tensilestress in the FRP plate
f. = compressive strength of concrete
fi.o = tensile stress in the FRP plate at the location of the cracks
G, = shear modulus of epoxy
I. = moment of inertia of concrete beam
1, = moment of inertia of plate beam
I,, = moment of inertia of transformed section
K, = normal stiffness per unit area of epoxy
L, = distance between origin of xo and cutoff point
L, = distance between the point of zero shear force and the cutoff
point
1 = distance between two successive cracks
M = bending moment
‘M. = bending moment in the concrete beam
M, = bending moment in the plate beam
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M, = bending moment in the concrete beam at the cutoff point
due to external load

M} = bending moment in the concrete beam due to shear flow

MI,“ = bending moment in the plate beam due to shear flow

q = external distributed load applied on concrete beam

Si.o = coefficients related to crack location

t, = thickness of epoxy layer

1, = thickness of the FRP plate

u = horizontal displacement in the epoxy layer

V. = shear force in the concrete beam

V, = shear force in the plate beam

V, = hear force in the concrete beam at the cutoff point
due to external load

vF = shear force in the concrete beam due to shear flow

VI;‘ = shear force in the plate beam due to shear flow

\Y = vertical displacement in epoxy (adhesive) layer

V. = deflection of the concrete beam

v, = deflection of the plate beam

X = longitudinal distance

X, = longitudinal distance in the definition of bending moment

v = distance of the center of FRP plate to the centroid of the
strengthened beam

V. = distance between the centroid and the bottom of concrete beam

B = coefficient used in normal stress definition

€. = axial strain at the interface of concrete and epoxy

g, = axial strain at the interface of FRP plate and epoxy
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