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A New Punching Shear Equation
for Two-Way Concrete Slabs Reinforced
with FRP Bars

by S. El-Gamal, E.F. El-Salakawy, and B. Benmokrane

Synopsis: Recently, there has been a rapid increase in using the non-corrodible fiber-
reinforced polymers (FRP) reinforcing bars as alternative reinforcements for concrete
structures especially those in harsh environments. The elastic stiffness, ultimate
strength, and bond characteristics of FRP reinforcing bars are quite different from those
of steel, which affect the shear capacity. The recently published FRP design codes and
guidelines include equations for shear design of one-way flexural members. However,
very little work was done to investigate the punching shear behavior of two-way slabs
reinforced with FRP bars. The current design provisions for shear in two-way slabs are
based on testing carried out on steel reinforced slabs. This study presents a new model
to predict shear capacity of two-way concrete slabs that were developed based on
extensive experimental work. The accuracy of this prediction model was evaluated
against the existing test data. Compared to the available design models, the proposed
shear model seems to have very good agreement with test results with better
predictions for both FRP and steel-reinforced concrete two-way slabs.
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INTRODUCTION

The long-term durability of reinforced concrete structures has become a major
concern in the construction industry. One of the main factors reducing durability and
service life of the reinforced concrete structures is the corrosion of steel reinforcement.
Many steel-reinforced concrete structures exposed to de-icing salts and marine
environment require extensive and expensive maintenance. Recently, the use of fiber-
reinforced polymer (FRP) as alternative reinforcing material in reinforced concrete
structures has emerged as innovative solution to the corrosion problem. In addition to the
non-corrosive nature of FRP materials, they also have a high strength-to-weight ratio
which makes them attractive as reinforcement for concrete structures.

Extensive research programs have been conducted to investigate the flexural behavior
of concrete members reinforced with FRP reinforcement. On the other hand, the shear
behavior of concrete members in general and especially punching shear of two-way slabs,
reinforced with FRP bars has not yet been fully explored. Since early 1960s, much
research has been carried out on punching shear behavior of slabs reinforced with
conventional steel and several design models were proposed (Moe 1961; kinnunen and
Nylander 1960; Vanderbilt 1972; Hewitt and Batchelor 1975, El-Salakawy et al. 1999
and 2000). However, these models can not be directly applied to FRP-reinforced concrete
slabs due to the difference in mechanical properties between FRP and steel
reinforcement. The modulus of elasticity for the commercially available glass and
aramid FRP bars is 20 to 25 % that of steel compared to 60 to 75 % for carbon FRP bars.
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Due to the relatively low modulus of elasticity of FRP bars, concrete members
reinforced with FRP bars experience reduced shear strength compared to the shear
strength of those reinforced with the same amounts of steel reinforcement. This results in
the development of wider and deeper cracks. Deeper cracks decrease the contribution to
shear strength from the uncracked concrete due to the lower depth of concrete in
compression. Wider cracks, in turn, decrease the contributions from aggregate interlock
and residual tensile stresses. Additionally, due to the relatively small transverse strength
of FRP bars and relatively wider cracks, the contribution of dowel action may be
negligible.

PUNCHING SHEAR PROVISIONS FOR FRP-REINFORCED
CONCRETE TWO-WAY SLABS

For steel reinforced concrete slabs, due to the relatively high modulus of elasticity of
steel, the dominant factor determining the concrete shear resistance will be the area of
concrete in the compression zone (after cracking), which remains practically unchanged
as the depth to the neutral axis does not vary much. This is true when using common
steel reinforcement ratios. Therefore, most design codes do not imply the flexural
reinforcement ratio in determining the punching shear capacity of steel reinforced
concrete slabs. However, due to the relatively low modulus of elasticity of FRP, the
concrete shear strength of FRP-reinforced concrete slabs becomes more sensitive to the
reinforcement stiffness as the depth to neutral axis is reduced significantly after cracking.
Thus, it deemed necessary to investigate the behavior and determine the punching shear
capacity of concrete slabs reinforced with FRP bars.

Current recommendations in the American Concrete Institute Code, ACI 318-05
(2005), and the British Standards, BS 8110-97 (1997), were empirically derived for slabs
reinforced with steel reinforcement. There is a lack of design and prediction models
related to the punching shear strength of concrete slabs reinforced with FRP composite
bars. El-Ghandour et al. (1999) conducted tests on FRP-reinforced concrete slabs with
and without shear reinforcement. They investigated both the strain and stress approaches
which used to determine the punching shear capacity of FRP reinforced concrete slabs by
converting the actual FRP reinforced area to an equivalent steel area to be used in
equations derived for steel reinforced slabs. They concluded that strain approach
represents a lower limit and the stress approach represents an upper limit for punching
capacity. They introduced a modified approach which incorporates both the strain and
stress approaches as a modification for the FRP area to equivalent steel area used in the
BS-8110 (British Standard Institution 1997)

In addition, they conducted experimental tests on FRP-reinforced concrete flat slabs
and compared the ultimate capacity with that predicted by different codes. They also
suggested a modification to the ACI-318-95 (1995) equation through multiplying the
obtained shear strength value by the term (Epgrp/Eee) 13 as follow:
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where f°. is the specified compressive strength of concrete (MPa), Erzp and E; are the
modulus of elasticity of FRP and steel respectively (GPa), b, is the critical perimeter at a
distance of d/2 away from the column face (mm), and d is the average flexural depth of
the slab (mm). Test results showed that this modification leads to accurate predictions of
the punching capacity of their tested FRP reinforced slabs without shear reinforcement.

Matthys and Taerwe (2000) studied the punching shear behavior of concrete slabs
reinforced with different types of FRP grids. Test results showed that for FRP-reinforced
slabs with similar flexural strength as the steel reinforced control slab, the obtained
punching load and stiffness were less. They also concluded that increasing the slab depth
enhanced cracking behavior, ultimate load, and stiffness in the fully cracked state. They
noticed that, as the elastic stiffness (pE ) of the tensile FRP reinforcing mat increases, the
punching capacity increases and the slab deflection at ultimate capacity decreases. From
test results, they suggested a modification to BS-8110 (British Standard Institution 1997)
to account for the use of FRP bars when determining the punching shear capacity as:

2
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where pyis the reinforcement ratio of the tensile FRP mat, b, is the rectangular or square
control perimeter at a distance of 1.5 d away from the loaded area (mm). The remaining
parameters are as defined in Eq. 1.

Ospina et al. (2003) examined the punching shear behavior of flat slabs reinforced
with FRP bars or grids. Four full scale square slab specimens (2150 x 2150 x 155 mm)
were built and tested under central concentrated load in static punching. The main
variables were the reinforcement materials, steel and GFRP, the type of FRP reinforcing
mat, bars or grids, and the reinforcement ratio. Test results showed that slabs reinforced
with FRP reinforcement display the same kinematics features observed by Kinnunen and
Nylander (1960) for steel reinforcement. The behavior was affected by the elastic
stiffness (pE) of the tensile reinforcing mat and bond with concrete. They introduced an
incremental modification to the equation presented by Matthy and Taerwe (2000) as:

Ay | E
Vc, Osp. = 2'77(pffr )A % bad (3)

where all parameters are as defined in Eq. 2

The sub-committee ACI440H is currently considering the introduction of a new
provision to account for the punching capacity of two-way concrete slabs reinforced with
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FRP bars in the next edition of the ACI-440.1R guide. This sub-committee has proposed
the use of Eq. (4). This equation considers the effect of reinforcement stiffness to
account for the shear transfer in two-way concrete slabs.

V=3Il be @

where b, is the perimeter of critical section for slabs and footings (mm) and c is the
cracked transformed section neutral axis depth (mm), ¢ = kd.

k=\2p,n,+(p,n,) —p,n, (4a)

In the evaluation of Eq. (4), b, should be evaluated at d/2 away from the column face.
In addition, the shape of the critical surface should be the same as that of the column.
Equation (4) can be rewritten as Eq. (5). This equation is simply the basic ACI 318-02
(2002) concentric punching shear equation for steel-reinforced slabs, V., modified by the

factor (%) which accounts for the axial stiffness of the FRP reinforcement.

5k ,
4 :[TJO.B\/Z b,d 5)

PROPOSED DESIGN EQUATION

An extensive research program has been carried out by the authors at the University
of Sherbrooke to investigate the punching shear capacity of bridge deck slabs reinforced
with FRP bars Through this program, eight full size bridge deck slab prototypes (3000 x
2500 x 200 mm) were constructed and tested to failure in the laboratory. The test
parameters were the type and ratio of the bottom reinforcement in the transverse
direction. The used FRP bars were manufactured by combining the pultrusion process
and an in-line coating process for the outside sand surface (Pultrall Inc., Thetford Mines,
Québec, Canada). The GFRP bar was made from high-strength E-glass fibers (75% fiber
by volume) with a vinyl ester resin, additives, and fillers. The carbon FRP (CFRP) bar
was made of 73% carbon fiber by volume, a vinyl ester resin, additives and fillers. All
tested slabs had the same GFRP reinforcement in all directions except in the bottom
transverse direction. Five slabs were reinforced with GFRP bars (1 to 2%) and two slabs
were reinforced with CFRP bars (0.35 and 0.69%). The remaining slab was reinforced
with steel bars (0.3%) in all direction as a control slab. The axial stiffness of the bottom
transverse reinforcement of the tested slabs ranged between 415 and 830 N/mm? The
slabs were supported on two steel girders spaced at 2000-mm centre-to-centre and were
subjected to a monotonic single concentrated load over a contact area of 600 x 250 mm to
simulate the foot print of sustained truck wheel load (CL-625 Truck as specified by the
Canadian Highway Bridge Design Code, CSA-S6-00 2000) acting on the centre of the
slab. The steel girders were supported over a span of 3000 mm in the longitudinal
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direction. The concrete slab was bolted to the supporting steel girders through holes in
the slabs. In addition, three steel cross frames were used to prevent the two girders from
lateral movement. Figure 1 shows a Photo of the test set-up. All the tested slabs failed by
punching shear as shown in Figure 2. More details on the test set-up and results can be
found elsewhere (El-Gamal et al. 2004). Based on this work, a new model to predict the
punching shear capacity of concrete deck slabs reinforced with FRP bars was proposed.
This model takes into consideration the most important factors to give better agreement
with the experimental results and is given by Eq. 6.
V.=V

N
¢ Ve, ACI 318 X(XX(IQ,)

(6)
v, =033f/ b, dxax(1.2)" (6a)

Equation 6 is a modified form of ACI 318-05 equation (11-35) that calculates the
punching shear capacities of concrete slabs reinforced with conventional steel. As all
designers and engineers are familiar with the ACI 318 equation, it was intended to keep
the equation in the same form and introduce two new parameters o and N to take into
account the effects of the axial stiffness of bottom main reinforcement and the continuity
of the slab where:

f. = the specified compressive strength of concrete (MPa),

b, = the rectangular critical perimeter at a distance of d/2 away from the loaded area
(mm),

d = the effective depth of the slab (mm);

N is the continuity factor taken as,
= 0 (for one panel slabs);
= 1 (for slab continuous along one axis);
= 2 (for slabs continuous along their two axes);

o is a new parameter which is a function of the flexural stiffness of the tensile
reinforcement (pE), the perimeter of the applied load, and the effective depth of the slat
was introduced.

a=05(p E)> (+8/j (6b)

where p and E are the reinforcement ratio and modulus of elasticity (in GPa) of the main
bottom reinforcement, respectively.

This model can be used to predict the punching shear capacity of concrete two-way
slabs reinforced with either FRP or steel reinforcement. Since the results used in this
study were based on punching shear tests carried out on isolated specimens (simply
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supported along the lines of contra-flexure around the load area), the continuity factor can
be removed (N = 0) and the proposed equation will be reduce to the following: .

Vc,Pmpomd =V sy X0 = 0'33\/7(:' b,dxa (6¢)

The term a can be calculated according Eq. (6b) where p is the average ratio of tensile
reinforcement in both directions.

This proposed model can be generally applied to predict the punching shear capacity
of two-way concrete slabs reinforced with FRP or steel reinforcement. Equation (6) was
verified against available experimental data conducted by other researchers (Ahmed et al
1993; Banthia et al. 1995; El-Ghandour et al. 1999; Matthys and Taerwe 2000; Ospina et
al. 2003; Hussein and Rashid 2004) and very good agreement with the test results was
obtained as shown in Figure 3. In this paper, Eq. (4) was selected to be compared to the
proposed Eq. (6). Equation (4) is the most recent design model that was based on
comprehensive study performed by Tureyen and Frosch (2003) investigating the sheai
strength of FRP and steel reinforced concrete members including the data used in this
paper. Tureyen and Frosch (2003) concluded that the above presented models (Eq. 1 to 5)
except Eq. (4), give either inconsistent or over conservative predictions compared to the
experimental results. They recommended the use of Eq. (4), which is currently undei
consideration to be included in the next edition of the ACI 440.1R.

Table 1 compares the predictions of Eq. (4) with those of the proposed equation. I
can be noted that the proposed equation (6) gives very good agreement with test results.
yet conservative. For Eq. (4), the mean value of the experimental/prediction was 2.64.
with a standard deviation of 0.64 (coefficient of variation of 24.4%). While the
corresponding values for the proposed model were 1.34 and 0.17 (coefficient of variatior
of 12.9%). The large standard deviation of equation (4) means that it does not reflect wel
the functional relationship between the shear parameters and the shear strength. The
larger scatter of Eq. (4) results as shown in Fig. 2 cannot be rectified by adjusting the
multiplier 4/5.

Furthermore, the proposed model was compared to two-way slabs reinforced witk
steel reinforcement (Marzouk and Hussein 1991; Elstner and Hognested 1960; Kinnuner
and Nylander, 1960; Emam 1995; Hognested 1964). The predictions were also in gooc
agreement with the test results as shown in Figure 4. In addition, the predictions of Eq. (4
with those of the proposed equation were compared as listed in Table 2. Again, bettei
agreement with test results was obtained by the proposed equation. This suggests that the
proposed equation can be used to predict the punching shear capacities of both FRP anc
steel-reinforced concrete two-way slabs. The average of the overall test/predicted values
of the tests (slabs reinforced with steel and FRP) was 1.21, the standard deviation was
0.17, and the coefficient of variation was 14.3%.
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CONCLUSIONS AND RECOMMENDATIONS

This paper presents a new equation to predict the punching shear strength of two-way
concrete slabs reinforced with FRP reinforcement (bars and grids). In the proposed
model, a new parameter, a, which is a function of the flexural stiffness of the tensile
reinforcement (pE), the perimeter of the applied load, and the effective depth of the slab
was introduced to the original ACI 318-05 (2005), Eq. 11-35, for conventional steel. In
addition, a summary of all available punching shear design models for FRP-reinforced
slabs were also presented. The proposed design model (Eq. 6¢) and Eq. 4 (under
consideration by the sub-committee ACI 440H) were compared to most of, if not all, the
published test results on FRP-reinforced concrete two-way slabs. Based on the performed
study, the following conclusions can be drawn:

1. The proposed design model, Eq. (6), gives very good agreement with test results of
FRP-reinforced concrete slabs, yet conservative.

2. The proposed model gives better predictions compared to (Eq. 4). For Eq. (4), the
mean value of the experimental/prediction was 2.64, with a standard deviation of 0.64
(coefficient of variation of 24.4%). While the corresponding values for the proposed
model were 1.34 and 0.17 (coefficient of variation of 12.9%).

3. This model can be generally applied to predict the punching shear capacity of two-
way concrete slabs reinforced with FRP or steel reinforcement.
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Fig. 2— Typical punching shear failure [El-Gamal et al. 2004].
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Fig. 3 — Comparison of the proposed and the ACl 440-H models against experimental
results for FRP-reinforced concrete two-way slabs.
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Fig. 4—Comparison of the proposed and the ACl 440-H models against experimental
results for steel-reinforced concrete two-way slabs.
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