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ABSTRACT 
 

The problem of the seismic reliability assessment of old masonry wall systems strengthened with 
fiber reinforced polymers (FRP) is of great practical concern. Recently, the use of these high 
strength composite materials, like Carbon or Glass fiber composites, has considerably increased 
in the field of structural repair. The applications in the field of architectural heritage are mainly 
intended to prevent the loss of the construction (with its frescoes, ornaments, sculptures), as a 
result of exceptional actions like earthquake. 
However, the application of FRP external reinforcements with elastic-brittle behaviour on low 
ductility structural elements like masonry walls induces a further reduction of the componential 
ductility, moving the system toward an ideal elastic-brittle behaviour. This involves a careful 
examination of the brittle components “bundle effect” in order to evaluate the change in the 
reliability of the structure as a whole.  
In this study, a great number of existing ordinary masonry buildings located in Italy are 
considered and the wall organizations are examined in detail. The selected buildings are sorted 
within different architectural typologies in order to have a representative sample of structural 
systems, show structural regularity along the height, and count typically one or two rigid floor 
levels allowing for proportional load sharing among the structural walls in the elastic range. 
The ultimate strength and displacement of wall systems is evaluated by means of a displacement 
driven non linear analysis (pushover analysis). Then, the structural strengthening with elastic 
brittle behavior like FRP strips is considered, and the increased shear strength of each masonry 
wall is provided, computing finally the building force-displacement relationship up to failure. 
The statistical analysis of the population’s performance points out with strong evidence the 
conflicting effect of strength and brittleness of FRP materials in enhancing the seismic reliability 
of complex low strength stone and masonry structures. 
As this preliminary study shows, the effective safety increment of the repaired system is seriously 
limited by its reduced ductility. The presented results seem to predict that very small reliability 
increments can be produced even applying huge FRP reinforcement ratios, so that for a class of 
buildings characterized by very low ductility, the strengthening with FRP is simply unfeasible. 
 

INTRODUCTION 
 

 In this paper the problem of the seismic reliability assessment of ordinary masonry wall 
systems strengthened with fiber reinforced polymers (FRP) is considered. Recently, the use of 
these high strength composite materials, like Carbon or Glass fiber composites, has considerably 
increased in the field of structural repair of both recent and historical masonry buildings. The 
applications in the field of architectural heritage are mainly intended to prevent the loss of the 
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construction (with its frescoes, ornaments, sculptures), as a result of exceptional actions like 
earthquake. In case of such events, the net of reinforcing elements must allow the structure to do 
not collapse. 
 However, the application of FRP external reinforcements with elastic-brittle behavior on 
low ductility structural elements like masonry walls induces a further reduction of the 
componential ductility, (Tinazzi et al., 2000, Tumialan et al., 2002, Bonfiglioli et al. 2003) 
moving the system toward an ideal elastic-brittle behavior. This involves a careful examination of 
the brittle components “bundle effect” in order to evaluate the restoration effect on the reliability 
of the system. In fact, the simple evaluation of the safety margin of each structural element does 
not lead directly to a reliability judgment on the structure as a whole (Melchers 1999). As is well 
known, in case of brittle elements, the collapse load of the system can be significantly lower than 
the sum of the single structural element collapse loads (Daniels, 1945). 
 

MASONRY WALL SYSTEMS  
 

 In this study, a number of 39 existing ordinary masonry buildings are considered and the 
relative structural systems are examined in detail. The selected buildings are sorted within 
different architectural typologies in order to have a representative sample of structural systems in 
terms of age, material quality, building technique and dimensions. All of the selected examples 
show structural regularity along the height, and count typically one or two floor levels only, in 
order to consider an equivalent one-floor shear wall system. Finally, the assumption of rigid floor 
panels allows to account a uniform load shearing among the structural walls in the elastic range. 
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Figure 1: Cumulative distribution of Φs 

 

 In order to show the main representative characteristics of the considered systems, the 
following geometrical factors are defined: 
− area factor (Φs): ratio between the resisting walls area at the basement and the basement area; 
−  eccentricity factor (Φe): ratio between the eccentricity between the stiffness and the mass 

centres at the first floor and the basement area square root. 
 The statistical cumulative distributions of Φs and Φe are shown in Fig.s 1 and 2. It can be 
observed from the figures that the selected examples typically represent the field of the Italian 
traditional masonry buildings. 
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Figure 2: Cumulative distribution of Φe 

 
 

STRENGTH DISTRIBUTIONS OF STRUCTURAL ARRANGEMENTS 
 

 The ultimate strength and displacement of each structural system is evaluated by means of 
a displacement driven nonlinear analysis (pushover analysis), accounting for a single direction 
displacement at a time and the coupled rotation due to the effective and accidental eccentricities,. 
Also, the performed pushover analysis allows to compute the building force-displacement 
relationships, where the gravity centre of the first floor is selected as a control point for the 
displacement, and the total shear force at the basement is the output force. 
 The constitutive model of the k-th shear wall is computed in accordance with the POR 
method (Braga, 1977). The strength Rk (Benedetti and Ceccoli, 1997) and the stiffness Kk are 
derived as follows: 
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where, for the k-th wall, σvk is the vertical normal stress, fck and ftk the compressive and tensile 
strengths, Ak the resistant area, Gk the elastic shear modulus, hk and bk respectively the height and 
the length in the considered direction. The maximum elastic displacement dk is computed as ratio 
between Rk and Kk; the ultimate displacement is computed assuming a standard ductility ηk = 1.5. 
 Then, the structural strengthening with elastic brittle behaviour like FRP strips is 
considered, and an increased shear strength of each masonry wall is accounted. For each wall, 
different levels of shear reinforcement are applied in order to obtain a final strength increment of 
the 10, 20, 30, 40, 50% of the original strength. On the other side, for each building, a different 
number of shear wall are strengthened in order to repair the 25, 50, 75 and 100% of the resisting 
shear walls. In Fig. 3, a schematic representation of the constitutive model assumed for un-
reinforced masonry walls (URM), and externally strengthened masonry walls (ESM) is reported. 
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Figure 3: Assumed constitutive models for URM and ESM walls 
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Figure 4: Cumulative distribution of the URM and ESM building strengths 

 
 Making use of the pushover analysis, the overall structural response is computed for the 
considered examples (original and strengthened systems) and the obtained results are reported in 
Fig. 4 in terms of statistical cumulative distributions. The choice of the probability distributions 
is founded on the best fit on computed values and is verified by means of the standard χ2 test 
(Taylor 1986, Lewis 1994); the computed values frequencies agree with the Normal theoretical 
distribution at a level of significance P(χ2 ≥ χ0

2) < 5%. 
 As is well known, when a finite number of structural elements are composed in parallel, 
the componential ductility degree influences the potential benefit offered by the active 
redundancy of the system. In fact, only the ideal plastic system provides the largest reliability 
achievable through redundancy, which renders the total strength of the system equal to the sum of 
all the component strengths (Gollwitzer and Rackwitz, 1990). 
 The considered systems redundancy is evaluated in terms of total strength loss or bundle 
effect. For URM and ESM systems, by denoting with Rsys the overall system strength, the bundle 
effect coefficient (BE) is computed as follows: 
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Figure 5: Cumulative distribution of the strength loss for URM and ESM wall systems 

 
 The obtained results are shown in Figure 5. Thanks to the even low ductility of the 
masonry walls, the original structural systems exhibit a limited strength reduction, with mean 
value smaller than 3% and maximum value around 15%. As expected, a not negligible strength 
reduction can be observed for fully strengthened system, with mean value around 20% and 
maximum value 40%. This sensible increase of the bundle effect is due to the FRP reinforcement 
that activates a more brittle behaviour of the reinforced walls and consequently reduces the 
overall system ductility (Figure 6). 
 By a careful examination of the obtained bundle effect for the original systems, two 
masonry building main classes can be defined: 
 Class I: structural systems with BE ≤ 5 % 
 Class II: structural systems with BE > 5 %. 
 This classification results to be very effective for design purposes. In order to evaluate the 
strength deterioration effect, an Efficiency Index (EI) is then introduced: 
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where the reinforced system strength increment ∆Rsys is given as follows: 
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 The EI index is always bounded between 0 (null strength increment) and 1 (null strength 
loss); when EI ≤ 0.5, the strength increment is equal or less than the strength loss and, in this 
case, this repair technique cannot be considered efficient enough for the structural repair. 
 In Figure 7, the obtained EI values are plotted for building class I and II. As can be drawn 
from the figure, the building class I raises sensibly higher values of EI. In fact, the 75% of the 
structural systems attain EI > 0.5 in class I while only the 38% in class II. This seems to address a 
possible design criterion able to select the optimal repair technique for URM structural systems. 
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Figure 6: Cumulative distribution of the overall ductility for URM and ESM wall systems 
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Figure 7: Cumulative distribution of the Efficiency Index for ESM wall systems of both classes. 
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Figure 8: Variability of the Efficiency Index mean value with the ratio of ESM walls 
 
 



With reference to Fig. 8, it is interesting to observe that the efficiency index mean value of both 
the building class I and II does not present appreciable variations increasing the percent of the 
strengthened walls. Since the EI mean value does not further increase when the strengthened wall 
percent exceeds 50%, it is reasonable to assess an optimal strengthening percent in order to 
balance the cost to benefit ratio. 
 

SEISMIC FORCE DISTRIBUTIONS 
 
 The seismic force evaluation is conducted making use of the design seismic response 
spectrum as defined by OPMC 3274, 2003. A medium soil quality (class B) and a standard 
structural damping (5%) are adopted in this analysis. 
 For sake of generality, three different Italian seismic zones are considered, with different 
values of horizontal peak ground accelerations, and respectively: 
 Zone I: PGA = 0.35 g,  Zone II: PGA = 0.25 g, Zone III: PGA = 0.15 g 
where g is the gravitational acceleration. 
 In the classified seismic zones, the assumed PGA held a probability of 10% to be 
overcome in 50 years; i.e. to be overcome once in 500 years. This seismic level is generally 
accepted by the international technical community in order to prevent the overall or even partial 
collapse of the structure. (Bertero and Bertero 2002, Trombetti et al. 2003).  
 For the considered examples, a behaviour factor q=1 is always assumed. The q factor has 
been computed making use of the performed pushover analysis and following the N2 method 
proposed by Fajfar (2000, 2003). In this framework, the nonlinear constitutive relation of each 
structural system (single degree of freedom or equivalent system) is transformed into a pseudo 
acceleration-displacement relation that can be compared with the elastic seismic acceleration 
spectrum expressed as a function of the spectral displacement. Finally, once the vibration period 
T* is defined for the structural system, the q factor is given by the ratio between the elastic 
spectral acceleration Sae evaluated in T* and the maximum pseudo-acceleration Say of the 
structural system: By denoting with  msys the total mass of the system, we have: 
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 For the examined structural systems, T* < 0.1 s is always found, since the masonry low-
rise buildings belong to the field of very stiff structures. 
 It is to note that the seismic force cumulative distributions are described by Gumbel and 
Normal distributions depending on the selected seismic zone. Again, the choice of the probability 
distributions is founded on the best fit on computed values and is verified by means of the 
standard χ2 test, and the computed values frequencies agree with the selected theoretical 
distribution at a level of significance P(χ2 ≥ χ0

2) < 5%. Figure 9 resumes the seismic force values 
obtained for the considered examples. 
 Once the probability density functions f of the resistance R and load S random variables 
are known for a considered structural system, the failure probability of the system can be derived 
as follows (Melchers, 1999):  
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Figure 9: Cumulative distribution of the seismic force reliability index evaluation 

 
If a safety margin function is defined as Z = R – S, and R and S are both normal random 
variables, Eq. (7) can be written as: 
 

 ( )= ( 0) Z
f C

Z

p P Z
µ β
σ

⎛ ⎞
≤ = Φ − = Φ −⎜ ⎟

⎝ ⎠
 (9) 

 
where Φ is the standard normal distribution function (zero mean and unit variance); µZ, σZ

2 are 
respectively the mean value and the variance of the safety margin random variable and βC is the 
Cornell Reliability Index (or Safety Index), implicitly defined by Eq. (10). When R and S are both 
normal random variables: 
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otherwise, the approximation 

1( )HL fpβ −= −Φ  can be properly assumed (Madsen et Al., 1986). 

 In the present paper, the β coefficient is adopted to assess the safety conditions of the 
analysed masonry buildings and to compare the performances of the original structural systems 
with the strengthened systems. In Figure 10, the probability density functions of the system 
strength and the seismic force for the considered examples are reported. It is interesting to 
observe that the strength probability distributions of the original and fully (100%) reinforced 
masonry systems differ of around 25% in the mean value. 

Seismic force (MN) 
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Figure 10: Probability density function of system strengths (Rsys) and seismic forces (S) 
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Figure 11: Reliability index for building class I and II 

 
 The Reliability Index is then computed making use of Eq.(11) or (12) for building class I 
and II, original and reinforced with FRP, subjected to seismic actions of Zones 1, 2 and 3. The 
obtained β values are reported in Figure 11 as a function of the strengthened wall ratio. 
 Two main observation can be drawn form the figure: 

a) For increasing strengthening ratio, the β coefficient increase is relatively small for building 
class I and very small for building class II; this trend highlights the efficiency lack already 
detected by means of the efficiency index analysis previously exposed. 

b) For any considered seismic zone, β < 2 (pf > 10-2 ) for building class I, β < 1.5 (pf  > 6 10-2) 
for building class II, which mean unacceptable reliability values for ultimate limit state 
condition (requested β ≈ 3, pf ≈  10-3). 

 Alternately, a different representation of the reliability problem can be given by 
subdividing the results in the old buildings and new buildings classes. After careful recognition 
the year 1950 has been used as a subdivision mark. However no definite trend in the response of 
the two classes with respect to the strengthening ratio can be inferred. 



 This is probably due to the casual belonging of new and ancient buildings to fragility class 
I and II. 
 

CONCLUSIONS 
 

 The presented results bring to very interesting considerations. A first question arises 
concerning the real possibility to improve the structural safety of masonry shear walls systems by 
means of FRP applications. As this preliminary study shows, the effective safety increment of the 
repaired system is seriously limited by its reduced ductility. Since ductility is a great safety source 
for seismic applications, any loss of ductility may involves severe consequences in terms of 
structural safety. The observed trend of the reliability index gives warning on the real 
effectiveness of this strengthening technique for this kind of application. In fact, the presented 
results seem to predict that very small reliability index increments can be produced even applying 
higher reinforcement ratios. The two identified building classes potentially address the design 
solutions: in fact, class II buildings are characterized by a rather brittle overall behavior and do 
not seem to be suitable at all for FRP strengthening techniques. 
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