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Punching Shear Capacity of Double
Layer FRP Grid Reinforced Slabs

by D.A. Jacobson, L.C. Bank, M.G. Oliva,
and J.S. Russell

Synopsis:  The punching shear capacity of concrete slabs reinforced with three-
dimensional fiber-reinforced polymer (FRP) double-layer reinforcement cages
composed of glass fiber-reinforced pultruded grating elements has been investigated
using full-scale experimental tests and a number of different analytical models.  Test
specimens were full-scale prototype bridge deck slabs with varying end restraint and
support conditions, differing dimensions, and two different FRP bar fiber lay-ups.  The
tests results were compared with the punching shear models in ACI 318, ACI 440,
Eurocode 2, BS 8110, CEB-FIB MC90, JSCE, and a number of models proposed in the
literature specifically for FRP reinforced slabs.  Based on this investigation a new
empirical model has been developed to predict the punching shear capacity of double
layer grids having either restrained or simply supported edges and including an
overlapping splice. The model is shown to give reasonably good predictions for both
simply supported and restrained slabs.
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punching shear; slabs
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INTRODUCTION 

 

The work presented in this paper forms part of a larger investigation to evaluate the

use of an innovative FRP reinforcement system in a new concrete bridge deck measuring 

130 by 45 ft (39.6 by 13.7 m) constructed in April 2004 on US Highway 151 over the De 

Nevue Creek in Fond du Lac, Wisconsin.  As part of the design of the bridge deck 

experimental tests and modeling were performed to develop design guidelines for the 

FRP reinforcement system and to assist with the development of construction details.

The FRP reinforcement system consists of very large double layer pultruded grids

measuring 42.5 ft by 8 ft (13.0 by 2.4 m).  Double layer pultruded grids have been 

studied in the past (Bank and Xi, 1993, 1995) and have been shown to have good 

potential as FRP reinforcements for decks from a cost and a performance perspective. 

This project was the first to apply the system to a new bridge deck.  One of the key issues 

that needed to be investigated prior to the application of the system was developing an 

effective longitudinal splice between the FRP grid panels.  Prior research (Bank and Xi, 

1995) on small-scale slabs had proven the potential for a non-mechanically connected 

overlapping splice in the grid system.  The critical load for a longitudinal splice (i.e.,

perpendicular to the girders) of this type is a concentrated wheel load that causes

punching shear failure in the slab.  This paper reports on the results of the study to

investigate the punching shear capacity of slabs with longitudinal lap splices in the FRP

double layer grids, and the behavior of the double layer grids, in general.  The study

included both experimental tests and analytical modeling of slabs with both simply

supported and restrained (due to continuity over simulated girder supports) ends.  In what 

follows the experimental work is described, the key results presented and comparisons 

with a number of existing code and proposed punching shear models for both steel

reinforced slabs and FRP reinforced slabs are presented.  A new empirical model that has 

been developed is then presented.  The model shows good ability to predict punching
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shear capacity of double layer FRP grid reinforced concrete slabs having either simply

supported or restrained edges. 

 

EXPERIMENTAL INVESTIGATION 

 

Specimens 

Five deck panel specimens were constructed.  Each was 8” (200 mm) thick, with three

of the test specimens (Specimens 1-3) measuring 6.5’ x 7.5’ (2.0 m x 2.3 m) and two 

(Specimens 7 and 8) measuring 6.5’ x 14’ (2.0 m x 4.3 m)
 1

.  Specimens 1-3 and 7 were 

cast outdoors at a concrete plant in northern Wisconsin.  Specimen 8, was cast indoors at

the University of Wisconsin over the upper portions of 54” (1372 mm) wide flange 

concrete I-girders to simulate actual bridge deck support conditions.  A Wisconsin DOT

Grade D, Size 1 (¾” (19 mm) max. aggregate size) concrete design mix, having a 28-day 

target compressive strength of 4,000 psi (27.6 MPa), was specified for all test specimens. 

    

Deck reinforcement for the test specimens consisted of the modular double layer

glass/vinylester pultruded FRP reinforcement cage (Fig. 1).  Each bi-directional FRP

grating layer of the reinforcement system was composed of pultruded 1.5” (38 mm) deep 

“I” bars spaced 4” (100 mm) on center as transverse reinforcement (perpendicular to deck

supports) and pultruded locking cross rods, also spaced 4” (100 mm) on center and

perpendicularly oriented to the I-bars, as longitudinal (temperature and shrinkage) 

reinforcement.  The two layers were held together and spaced apart by FRP mechanical

connector pieces.  The mechanical connector pieces also served as “chairs” for the 

reinforcement cage system, spacing the bottom flanges of the lower grating layer 1” (25 

mm) above the deck formwork.  Concrete cover to the top flanges of the top grating layer 

was 1.5” (38 mm).  The top and bottom grating layers were vertically spaced by a clear

distance of 2.5” (64 mm).  Due to the smooth finish on the FRP I-bars and locking cross-

rods, very little bond is achieved between the concrete and FRP materials.  However, the

planar and perpendicular configurations of the FRP grid pieces mechanically anchor the 

reinforcement cage within the concrete every 4” at I-bar/cross rod intersections.  In the 

bridge deck the transverse 1.5” (38 mm) I-bars are continuous over the bridge girders 

from one side of the bridge deck to the other.  The cross rod pieces, or bridge longitudinal

reinforcement, however, is spliced every 7’ (2.1 m) longitudinally.  Adjacent

reinforcement cages are spliced together by means of a non-mechanically connected 12” 

(250 mm) overlap (Fig. 2), which provides continuity in the longitudinal direction.   

 

The lap-splice region has been identified as the weakest part of the proposed bridge

deck reinforcement system and therefore was included in all test specimens.  The slabs 

were loaded at midpoint and the FRP reinforcement was designed to have the critical

longitudinal splice at the edge of the critical perimeter of the loading footprint (Fig. 3).   

 

                                                           

1

 Specimens 4, 5 and 6 were flexural test specimens and are not discussed in this paper. 
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Test specimens 1-3 were placed on concrete support blocks and tested as simply 

supported slabs with a span of 6’6” (2.0 m).  Specimens 7 and 8 were set-up to simulate a 

partial three-span configuration with deck continuity over two interior supports.

Specimen 7 was centered on two concrete support blocks spaced 6’6” (2.0 m) center-to-

center, which left overhangs of 3.75’ (1.2 m) to the outside of each support.  Specimen 8

was cast over the upper portions of two wide flange concrete precast girders (Wisconsin 

54W, 54” (1372 mm) deep).  This is the same girder section that was used in the bridge. 

The girder has 48” (1219 mm) wide top flanges.  The girder supports were aligned and

spaced to create 6’6” (2.0 m) from centerline-to-centerline, the same girder spacing as in

the bridge.  Due to the wide flanges of the girder supports, the actual clear span for the

deck slab between the flange supports was 2’6” (0.8 m).  Since the ends of test specimens 

7 and 8 extended beyond the two interior supports, the overhanging ends were tied to the 

structural floor using a large steel frame and threaded rod in order to restrain them against 

upward displacement.  This configuration was intended to better model actual bridge

conditions and to study the effects of slab flexural end restraint on punching shear

capacity. 

 

Test Methods 

Deflection measurements were taken with linear variable differential transformers

(LVDTs) and strain potentiometers (Jacobson, 2004).  Load cells measured all loads 

applied to the specimens.  FRP and concrete material strains were recorded using 

electrical resistance strain gauges (see Jacobson, 2004 for details).  Test loading was 

applied using a 200 kip (890 kN) capacity closed-loop servo hydraulic actuator, which 

was mounted vertically in a heavy steel frame that was bolted to a structural floor.  A 

single patch load was applied to the center of each specimen using a 1.5” (38 mm) thick

steel plate and a 2” (50 mm) thick neoprene rubber bearing pad with a length and width

of 10” by 25” (250 by 635 mm).   

 

Each specimen was subjected to manually-controlled monotonic loading until failure. 

Prior to the initiation of the ultimate capacity test, several monotonic service load cycles 

were run to document the cracking loads and behavior of the specimen through the 

service range (0-20.8 kips (0-92.5 kN)).  In addition, one of the simply-supported 

specimens (Specimen 1) was subjected to fatigue cycling prior to the ultimate capacity

portion of the test.  The fatigue cycling was performed at 3 Hz as a sinusoidal wave load 

function peaking at 4.4 and 20.4 kips (19.6 and 90.7 kN).  The 20.4 kip (90.7 kN) fatigue 

load was considered generally representative of the fatigue loads that the actual bridge

deck might experience.  A total of two million load cycles were conducted to simulate the

fatigued condition of a bridge deck.  

 

Test Results 

The load deflection curves for the slabs are shown in Fig. 4.  The ultimate capacities

of the simply supported slabs (Specimens 1-3) correlated very well with each other; 

average capacity was 120.2 kips (535 kN) with a maximum difference of 1.2% from one 

another even though Specimen 1 had experienced an additional 2,000,000 cycles of

fatigue load.  The two flexurally-restrained specimens gave very different results from 

one another, due to differing support conditions.  Specimen 7 failed at an ultimate 
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capacity of 162.2 kips (722 kN), while Specimen 8(with actual wide flange girder

supports) carried an applied load of 201 kips (894 kN) when the test was ended. 

Unfortunately, the actuator’s capacity was reached and complete failure was not achieved

in Specimen 8, however radial punching shear cracks had developed on the top surface of

the slab at the maximum load, which indicated an impending shear failure.  All the results

offered convincing evidence that the proposed FRP reinforcement cage system would 

perform well in the proposed bridge.  In each case, the failure plane of the shear punch 

occurred through the lap-splice region of the FRP reinforcement cage.  Fig. 5 shows a 

post-mortem section of one of the simply supported slabs where the failure “through” the 

lap splice region can be seen.  Once a punch had begun, the splice would allow the 

specimen to “peel” apart at that region (due to no mechanical fasteners between spliced 

FRP reinforcement cages).  This “peel” behavior was less pronounced in Specimen 7 due

to the continuous and flexurally-restrained nature of the specimen ends.  In addition, the 

punch area in Specimen 7 was cleaner and more defined, and more localized in

comparison to the simply-supported tests (see Jacobson (2004) for more details and 

photographs of the failure surfaces). 

 

Fatigue cycling did not appear to have an effect on the deck or the performance of the 

FRP reinforcement cage system, as residual deflections and stiffness loss due to fatigue

cycling were minimal (Jacobson, 2004).  This conclusion is substantiated by a close

correlation in stiffness and nearly identical punching shear capacity test results from 

Specimens 1-3.   

   

ANALYTICAL INVESTIGATION 

In two-way reinforced concrete slabs the punching shear resistance is provided by the

shear resistance of the concrete, V
c
.  This shear resistance acts over the area equal to the 

length of a “critical perimeter” multiplied by the effective depth of the section, d.  The

critical perimeter is identified by the letter u and a subscript that represents the distance

that the critical perimeter is offset from the perimeter of the area of the concentrated load,

as a multiple of the effective depth, d.  For example, u
1.5

 is the critical perimeter 

measured at a distance 1.5d from the edge of the loaded area.  The following sections

consider several models for V
c
.  The selected models were used to predict capacities for 

the slab test specimens, which were then compared to actual test ultimate capacities.   

 

Punching Shear Models 

A number of design standards provide punching shear design equations, typically for

use with decks having steel reinforcement.  Less is known about the punching shear 

behavior in concrete decks having FRP grid reinforcement systems.  Similar to work

performed by Banthia et al. (1995), Matthys and Taerwe (2000), El-Ghandour et al. 

(1997, 2003), and Ospina et al. (2003), an attempt is made to determine the best punching

shear prediction model for the FRP grid-reinforced concrete bridge deck system used in 

this study.  

   

ACI 318-02 – The punching shear capacity of a non-prestressed steel reinforced slab

is given by the smallest of: 
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where β
c
 is the ratio of the long side to short side of the rectangular concentrated load 

area, α
s 

is equal to 40 for interior slab loading, d and u
0.5

 are the effective depth and 

critical section perimeter, respectively, and f′
c
 is the compressive strength of concrete in 

psi.  The ACI equations are a function of the concrete strength and the surface area of an

approximated shear failure plane and do not consider the deck reinforcement 

configuration, span, or slab end restraint.  ACI’s equations were empirically derived for 

concrete decks having mild steel reinforcement.  For design, the nominal shear capacity 

is multiplied by the resistance factor, φ, however, for comparison with test results no 

resistance (or partial safety factors) were used in the calculations.   

 

ACI 440 – The forthcoming (2005) revision of ACI 440.1R gives an equation for FRP

reinforced slab punching shear capacity based on research by Ospina (2005) and Tureyen 

and Frosch (2003) given as,   
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where, η is the FRP to concrete modular ratio and ρ is the FRP reinforcement ratio.  The

critical perimeter for the ACI 440 model is taken as u
0.5

 similar to ACI 318.   

 

Eurocode 2 (1992) – provides an empirical relationship that defines a bi-directional

reinforcement ratio, ρ (where x and y denote the longitudinal and transverse directions of

the reinforcement) and an averaged depth to the bottom layer reinforcement for the

punching shear capacity of a steel reinforced slab as: 
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The Eurocode 2 equation includes a partial safety factor, γ

c
, which was set equal to 1.0 to

get an unfactored prediction of the punching shear capacity.  The mean value of tensile 

strength, f
ctm

 was used in place of the characteristic tensile strength, f
ctk

, which

corresponds to the 5%-fractile strength.  The term f
ck

 represents the characteristic

compressive strength of the concrete, which is equal to the mean compressive strength

determined through cylinder testing, f
cm

 (basically the Eurocode’s version of f’
c
), minus 8 

MPa for reliability of concrete strength.  Eurocode’s model does not consider slab end 

restraint. 

 

BS 8110 – The British Standards Institution’s BS 8110 gives the punching shear 

capacity for steel reinforced slabs as, 
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Like the Eurocode, BS 8110 includes a partial safety factor, γ
m
 which is set equal to 1.0. 

Variable k
1
 is an enhancement factor for support compression and is conservatively taken 

as 1.0.  As with the Eurocode 2 equations the mean compressive strength, f
cm

, is used in 

place of the characteristic strength, f
ck

.  

 

CEB-FIP Model Code 1990 (MC90) – gives the punching resistance of a steel 

reinforced slab as the lesser of the following: 
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constant (Matthys and Taerwe, 2000).  Therefore, to get an unfactored prediction of 

punching shear capacity, the 0.12 constant was multiplied by partial safety factor of 1.5 

to cancel out the integrated factor (0.18 used instead of 0.12).  

 

JSCE – Japan’s Society of Civil Engineering (JSCE) provides an empirically-based

code equation for the punching shear capacity of FRP reinforced concrete decks.  The 

JSCE relationship is tailored for use with FRP-reinforced concrete and incorporates the 

FRP to steel modular ratio directly.  Like the other design equations discussed thus far,

JSCE does not account for variations in span or slab end restraint.  The JSCE equation is: 
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(7) 

 

where f
cm

 is the mean concrete compressive strength.  

 

El-Ghandour et al. (1999) – proposed an approach that incorporates an FRP to steel 

modular ratio to account for the lower axial stiffness of FRP, based on the ACI 440 

equations for concrete shear strength in FRP-reinforced concrete: 

 

 

(8) 

 

Ospina et al. (2003) – refined the Matthys and Taerwe (2000) by adjusting a 

coefficient to provide an even better fit to the test data that they considered: 
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The punching shear equations proposed by ACI Committee 440, JSCE, Matthys and 

Taerwe, and Ospina et al. (2003) were developed specifically for use with the actual FRP 

reinforcement ratio and are not be used in conjunction with a modified reinforcement 

ratios presented in what follows.   

 

Method 1 – The first method of determining the FRP reinforcement ratio, ρ
1
, is the 

standard ratio of reinforcement area to deck concrete cross-sectional area defined by 

width, b, and effective section depth, d.   

 

 

(11) 

 

Method 2 – The second method, ρ
2
, is adopted from JSCE (1997) and also appears in 

design recommendations by Sonobe et al. (1997) factors the standard reinforcement ratio, 

ρ
1
, by a modular ratio of FRP to steel to achieve an “equivalent” area of steel,  

 

 

(12) 

 

Method 3 – El-Ghandour et al. (2003) propose that the standard FRP reinforcement

ratio, ρ
1
, be multiplied by the FRP to steel ratios of strain and elastic moduli.  They

suggest a lower bound strain limit of 0.0045 for FRP reinforcements and 0.0025 for the 

yield strain of steel reinforcements. 
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Since in the double layer grid considered in this study the reinforcement area is
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reinforcement ratios was used in the punching shear prediction calculations.  An average

ratio that is weighted by reinforcement stiffness was used for Method 1 and given as, 
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areas were calculated using the net area of the bar, that is, the gross area of the bar minus 

the area of the hole through the web for cross-rod insertion.  Cross-rod areas were

assumed equal to the holes through the I-bars (½” (12.6 mm) diameter).  Only the bottom 

layer of grating reinforcement was considered in the calculation of punching shear

capacity for the deck system.  An extra set of slab properties from a series of tests 

conducted by Bank and Xi (1995) are included in the tables as this set of test data was 

included in the punching shear analysis to create a larger pool of results from which to 

draw conclusions.  Bank and Xi performed tests on half-scale concrete slabs that utilized 

smaller, but very similar I-bar/cross-rod gratings as top and bottom layer reinforcements.  

 

COMPARISON BETWEEN PREDICTED AND EXPERIMENTAL RESULTS 

 

Tables 3 to 6 present ratios of test capacity to predicted capacity for each of the test 

specimens.  Ratios of 1.0 perfectly predict the test capacity.  Ratios higher than 1.0 show

some level of conservativeness (i.e., safe), while ratios below 1.0 show that the model 

overestimates the shear capacity of the deck slab (i.e., unsafe).  The tables are organized

by the reinforcement ratio used in calculating the predicted capacities.  For this reason, 

some models do not appear in all of the tables (such as ACI 318, which offers the same

predicted capacity regardless of the reinforcement ratio).  The results are grouped by test 

configuration type: simply-supported slabs (Specimens 1-3) and then the flexurally-

restrained slabs (Specimens 7, 8 and Bank and Xi Specimens 1-6).   

 

Looking only at the ratios calculated in Table 3 using the actual reinforcement ratio, ρ
1
, 

none of the design code equations provide good predictions of capacity for the simply-

supported specimens (Specimens 1-3).  All but the ACI 440 approach overestimate the 

capacity of the simply supported slabs.  This was expected given the reduced axial 

stiffness of the FRP reinforcements compared to steel.  ACI 440 which was developed for

FRP-reinforced concrete, provides a rather conservative prediction.  Considering the 

flexurally-restrained slabs, the Eurocode and MC 90 code equations still tend to 

overestimate the capacity of the deck system.  However, the other code equations provide

conservative predictions, with the BS 8110 code equation showing the best fit to the data. 

The ACI 440 equation is shown to be overly conservative for the flexurally-restrained 

slabs, and at least for this body of test data, inferior to the original ACI 318 approach.   

 

Of the approaches proposed by researchers, the equation by Ospina et al. (2003) 

provides the best predictions for the simply-supported slabs, but becomes quite 

conservative when applying the equation to the flexurally-restrained specimens.

Conversely, the equation proposed by Matthys and Taerwe (2000) provides the best 

prediction for the flexurally-restrained slabs, but overestimates the capacity of the

simply-supported slabs.  The approach suggested by El-Ghandour et al. (1999) gives 

appropriately conservative predictions for the simply-supported test specimens, but 

becomes overly conservative when considering the flexurally-restrained specimens. 

   

The ratios calculated using the modified reinforcement ratio, ρ
2
, are shown in Table 4. 

The ACI 318, ACI 440, and El-Ghandour equations are not a function of the 

reinforcement ratio and do not yield a different prediction when ρ is varied therefore they 
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are not included.  The JSCE equation appears here for the first time since it was 

developed for FRP-reinforced concrete using an actual reinforcement ratio multiplied by

the modular ratio.  The JSCE and MC90 code approaches both provide similar good 

capacity predictions for the simply-supported slabs.  Like most of the approaches

discussed thus far that provide good predictions for the simply-supported slabs, the JSCE 

equation becomes overly conservative when considering the flexurally-restrained slabs. 

The MC90 equation, however, provides reasonable though conservative predictions of

capacity for the flexurally-restrained slabs.  The reduction in reinforcement ratio caused

the equation proposed by Matthys and Taerwe to become conservative with respect to 

Table 3.   

 

The final table of test to predicted capacity ratios, Table 5, presents the capacity 

predictions using the modified reinforcement ratio, ρ
3
.  The reinforcement ratio is

increased slightly over that used in Table 4, but it is still much less than the actual 

reinforcement ratio.  The equation proposed by Matthys and Taerwe (2000) gives the best

overall fit to this series of test capacities, with nearly perfect predictions for the simply-

supported specimens and reasonably conservative predictions for the flexurally-restrained 

capacities.    

 

NEW PUNCHING SHEAR MODEL FOR DOUBLE LAYER FRP GRATING 

REINFORCED SLABS WITH OVERLAP SPLICE 

Each of the punching shear capacity models has been empirically derived for two-way 

slab action in which some level of edge restraint is present.  However, no portion of any 

of the shear equations presented here directly incorporates the effect of varying levels of 

slab edge restraint, whether rotational or axial restraint.  This is evident by the test to 

predicted capacity ratios; the tested spans of Specimens 1-3 and 7 are identical aside from

the level of restraint present at the supported ends of the slab, yet the capacity ratios are

not consistent.  Additional research is necessary to fully consider and potentially model 

the effects of edge restraint on punching shear capacity.  From this limited body of test 

results, no such model having an appropriate level of reliability can be proposed. 

  

In general, ACI 318 offers a fair prediction of capacity for the flexurally-restrained slabs 

but overestimates the capacity for the simply-supported slabs.  The punching shear

equation proposed for the upcoming revised edition of the ACI 440 guidelines is shown

to be overly conservative for all specimens, especially the flexurally-restrained slabs.

The best models are shown to be the MC90 code equation used with the modular-

modified reinforcement ratio ρ
2
 and the approach proposed by Matthys and Taerwe

(2000) used in conjunction with the reinforcement ratio modification ρ
3
 proposed by El-

Ghandour et al. (2003).  These models provide capacity predictions that offered a nearly

identical mean value and standard deviation for the entire body of test results.  However, 

the modified reinforcement ratio suggested by El-Ghandour et al. (2003) assumes an

ultimate strain of 0.0045 in the flexural reinforcement.  Testing on Specimens 2 and 3 has

shown that the tensile axial strains experienced at ultimate capacity in the FRP

reinforcements of the bottom layer grating (<0.0031) were less than this seemingly

arbitrarily set strain limit, and the calculated yield or rupture strains based on the
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longitudinal strength and stiffness properties of the FRP are greater than 0.017 in/in.  For

this reason, the second modification of the FRP reinforcement ratio, ρ
3
, will not be

considered further, as the method appears to lack justification, at least for the FRP

gratings considered in this research.   

Based on a review of the results of the previously proposed models a new model is

proposed by the University of Wisconsin (UW) for the punching shear resistance of 

glass/vinyletser mechanically-connected FRP double-layer pultruded grating-reinforced 

concrete slabs.  The model is a modification of the empirical approach by Matthys and 

Taerwe (2000): 

 

 

 

(16) 

 

 

Variable ρ is the actual reinforcement ratio ρ
1
, averaged and weighted for differing ratios

in the main and distribution reinforcement directions according to Eq. (14).  The critical 

perimeter, u
1.5 

, is representative of the top and bottom surface averaged failure perimeter 

seen in testing of Specimens 1-3, and 7.   

 

The model nearly perfectly predicts the capacities of the simply-supported slabs, which 

means that for typical deck applications, where some level of edge restraint is involved,

the calculated capacity will be conservative, but not overly conservative as shown in 

Table 6.  In comparison to the empirical equations considered earlier, the proposed 

punching shear model provides the overall best fit to the entire body of test capacities

considered.   

 

CONCLUSIONS 

 

A series of punching shear tests were performed on deck slab specimens reinforced with 

double layer glass/vinylester FRP pultruded grids having varying dimensions, support

conditions, and end restraint conditions using a patch load that simulated the tire contact

area of an HS-20 design truck double wheel.  Punching shear was the mode of failure

identified in all of the slab specimens.  The punching shear capacity of the slab specimens

was shown to be enhanced by introducing edge restraint to the specimens.  In each case, 

the shear punch failure plane acted through the non-mechanically connected overlap

splice between adjacent reinforcement cages.  This confirmed the notion that the simple

overlap splice would be the most structurally vulnerable aspect of the FRP reinforcement 

system, due to a lack of physical reinforcement continuity.  It is important to note, though

that this shear failure occurred through the splice region at loads many times greater than 

the HS-20 service load.  No behavior was observed that would suggest that the overlap 

splice could jeopardize the structural adequacy and integrity of the FRP-reinforced deck 

system under truck traffic loading factored for impact per AASHTO Specifications.       
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An analysis of the punching shear strength of the FRP-reinforced slabs was performed 

using several empirically derived design models.  The models, used to predict punching

shear capacity, were evaluated based on the accuracy of the predictions relative to actual

test capacities.  Of the selected punching shear models, empirical approaches by the 

CEB-FIB Model Code 90 (1990) (using a reinforcement ratio modified to account for the

axial stiffness of FRP) and by Matthys and Taerwe (2000) (also using a modified 

reinforcement ratio) yielded the best “fits” to the available slab data.   

 

A new empirical equation based on the approach by Matthys and Taerwe (2000) has been 

proposed that provides an even better fit to the test data for double-layer glass/vinylester 

grating reinforced slabs.  The new equation is recommended as it is derived especially for

concrete slabs reinforced slabs reinforced with commercially available double layer FRP 

gratings with non-connected overlapping splices formed by offsetting the top and bottom

grid panels.  The applicability of the proposed equation to other heavy grid systems (such 

as NEFMAC) with similar overlapping splices or with different fiber types (such as 

carbon or aramid) or different grid intersections (such as integrally molded intersections) 

is not known at this time. 
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Fig. 1 - Three dimensional double layer pultruded FRP grid

Fig. 2 - Close-up view of longitudinal lap splice between two grids
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Fig. 3 - Location of load patch relative to longitudinal splice

Fig. 4 - Load-displacement curves for slab tests (1k = 1 kip = 4.445 kN, 1 in. = 25.4 mm)

Fig. 5 - Punching shear failure through splice region (post-mortem)
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