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Abstract

Three nonlinear multi-axial constitutive models for pultruded fiber reinforced plastic composites are proposed and

examined in this study. The first two are macromechanical models that idealize the entire composite material as ho-

mogeneous orthotropic under plane stress conditions. The third is a new three-dimensional (3D) micromechanical

model where the fiber and matrix responses are explicitly recognized and the nonlinear behavior is expressed at the

matrix level. The pultruded composite material system considered in this study consists of two alternating layers of

roving and continuous filament mat. The two layers have E-glass/vinylester fiber/matrix constituents. Coupon tests were

performed for calibration and verification of the proposed models. Nonlinear response is calibrated using V-notch tests,

to generate the axial-shear stress–strain, and uniaxial transverse tests. Off-axis coupons were cut with different roving

orientations in order to generate in-plane multi-axial stress states. The nonlinear axial stress–strain curves of the off-axis

tests are compared with the predicted curves from the three proposed models. Good agreement is shown for all off-axis

angles when comparing the experimental stress–strain curves with those predicted by the 3D micromodel. The nonlinear

curves predicted by the two nonlinear orthotropic models are also in good agreement with the experimental results but

not for all off-axis orientations. All three models can be easily integrated within a finite element code for the general

nonlinear analysis of pultruded composite structures using layered shell or 3D type elements.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Pultrusion is a manufacturing process where

structural members having a constant cross-

section are made with different reinforcement sys-

tems: unidirectional bundles of fibers (roving),
woven, and nonwoven mats, such as continuous

filament mat (CFM). Pultruded members can have

a relatively thick cross-section with a typical

thickness range of 1/400–100 and a combination of

reinforcements. Unlike laminated composites,

pultruded composites are usually thicker and can

have the same volume as traditional metallic
structural profiles. Therefore, pultruded compos-

ites are favorable candidates to be used for high

strength and light weight civil and infrastructure

applications. There are additional advantages of

thick-section pultruded composites, such as being

corrosion resistant and electrical or magnetic in-

sulators in transmission towers.
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Pultruded fiber reinforced plastic (FRP) com-

posites may exhibit nonlinear stress–strain behav-

ior under multi-axial static loading conditions.

This nonlinearity usually results from the behavior

of the soft polymeric matrix constituent while the

fibers (roving) generally exhibit elastic and brittle
behavior. The presence of manufacturing defects

in the form of voids and microcracks amplifies this

nonlinear material response. Geometric disconti-

nuities at the structural level, such as cracks, holes,

and cutouts, enhance this behavior. The nonlinear

behavior can influence the overall structural re-

sponse and its mode of failure especially at higher

load levels. Therefore, nonlinear material model-
ing in the analysis of pultruded structures can be

important in order to determine accurate states of

deformations.

Many experimental and analytical studies have

been focused on the nonlinear response of lami-

nated composite materials. Macrolevel theories are

formulated to characterize the nonlinear response

by idealizing the composite as anisotropic homo-
geneous medium. Petit and Waddoups (1969) pro-

posed an incremental approach for the analysis of

symmetric laminates under uniform membrane

loading. In their approach, the elastic constants

of a lamina are determined as a function of the

lamina strains. A lamina failure is identified when

any of its strain components exceeds the experi-

mentally obtained limiting strain value. Once a
failure mode is detected in the lamina, the corre-

sponding tangent stiffness is set to a high negative

value in order to achieve stress unloading in this

direction. Their analyses predicted the overall

shape of the nonlinear response quite well, while

the laminate ultimate failure loads were predicted

with acceptable accuracy.

Hahn and Tsai (1973) used the complementary
energy density polynomial function, for a lamina

under a plane-stress state, to derive a nonlinear

stress–strain relation for laminated composites. An

additional fourth-order term of the axial-shear

stress is added to the polynomial function. This

term represents the nonlinear shear strain. Inter-

action terms between the three stress components

were neglected. Hahn (1973) extended this work to
model the nonlinear behavior of laminates, and

considered the effect of material nonlinearity on

the buckling load of a symmetric laminate. Hashin

et al. (1974) formulated a new nonlinear constit-

utive model where inelastic transverse and axial

shear strains exist in a lamina under plane stress

conditions. Each inelastic strain component is an

independent quadratic function in terms of the
stress invariants raised to a general power. Ram-

berg–Osgood representation of nonlinear stress–

strain curves was used to express the nonlinear

axial-shear and transverse stress–strain relations.

Predicted nonlinear behavior compared well with

experimental results for different laminated com-

posite materials.

Jones and Nelson (1974) proposed a material
model based on strain energy that accounts for

nonlinear behavior under biaxial states of stresses.

This model can only be applied to multi-axial

stress states where the strain energy is lower than

the maximum strain energy generated in the uni-

axial test results. Since this is often the case when

the composite is subject to general multi-axial

stress states, different approaches were proposed
to overcome this difficulty, Jones and Morgan

(1977), Abu-Farsakh (1989).

Amijima and Adachi (1979) introduced a simple

technique to represent the shear nonlinearity using

piecewise linear segments. Sandhu (1976) intro-

duced a technique for solution of the nonlinear

laminate equations using piecewise cubic spline

functions to represent the lamina uniaxial test data.
He also proposed a predictor–corrector iterative

method. Nahas (1984) presented a similar predic-

tor–corrector technique in which the basic uniaxial

stress–strain relations are allowed to have a general

nonlinear representation. Kuppuswamy et al.

(1984) used the Richard and Abbott (1975) repre-

sentation for the nonlinear uniaxial stress–strain

relations in a three-dimensional finite element
analysis. However, their study uses uncoupled one-

dimensional stress–strain relations which do not

reflect interaction effects. Pindera and Herakovich

(1983) and Mathison et al. (1991) derived a non-

linear plane stress constitutive model using ortho-

tropic endochronic theory. This theory is based on

irreversible thermodynamics with internal vari-

ables.
Dvorak and Rao (1976) proposed a plasticity

theory for fibrous composites under axisymmetric
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deformation. Plastic dilatation and deformation of

the composite in the fiber direction were accounted

for. A yield function was formed using the stress

invariants of a transversely isotropic material and

simple hardening and flow rules were derived.

Griffin (1981) extended Hill�s anisotropic plasticity
theory, and used the associated plasticity flow rule

to determine the plastic increment of strain. A

Ramberg–Osgood uniaxial stress–strain relation

was used to model nonlinear hardening. Sun and

Chen (1989) developed a one parameter ortho-

tropic plasticity model for thermoplastic and me-

tal–matrix composite laminates in plane stress. In

this model, one-parameter plastic-potential scalar
function is proposed. Only transverse and axial

shear stresses are involved in the plastic potential;

therefore, plastic deformation in the axial direction

of the lamina is neglected. In addition, a power law

relation between effective plastic strain and the

effective stress is proposed; as a result, a total of

three material parameters are needed to fully de-

scribe the lamina plastic behavior.
The above nonlinear constitutive models have

been mainly applied to laminated composites un-

der plane stress conditions. These models have not

yet been applied to account for the nonlinear be-

havior of pultruded composites. In fact, multi-

axial nonlinear models for pultruded composites

have been limited. This can be attributed to the

fact that pultruded composite structural members
are designed to carry predominant axial loading

and the unidirectional roving is the main rein-

forcement that is often used. As a result, constant

axial properties and linear material response are

usually combined with beam or plate theories to

perform general structural analysis. Luciano and

Barbero (1994) proposed models that can predict

the overall initial stiffness from micromechanical
theories for each composite system (layer) that

forms the cross-section of a pultruded member.

Classical lamination theory and mechanics of

laminated beams were used to predict the overall

axial stiffness. Haj-Ali et al. (2001) have recently

proposed a three-dimensional (3D) micromechan-

ics-based framework for linear and nonlinear

analysis of pultruded composite materials and
structures. This material and structural framework

integrates different nonlinear 3D micromechanical

models for each of the reinforcement layers that

form the pultruded cross-section. Each micro-

model recognizes the linear or nonlinear response

of the fiber and matrix constituents.

This study presents the nonlinear 3D micro-

mechanical material models used for the roving
and CFM layers of a pultruded section. The Hahn

and Tsai (1973) and Hashin et al. (1974) homo-

geneous orthotropic (plane stress) macromodels

are also implemented and examined, along with

the 3D micromodels, in their ability to predict the

nonlinear multi-axial response of E-glass/viny-

lester pultruded composite material. The experi-

mental results of Haj-Ali and Kilic (2002) are used
to calibrate the linear and nonlinear material

properties needed in the three proposed models.

Off-axis coupons under compression are used to

examine the nonlinear prediction of the above

constitutive models. These coupons make it pos-

sible to examine the nonlinear material response

for different in-plane stress states.

2. Pultruded composite material system

The composite coupons tested in this study were

cut from a 1/200 pultruded plate with alternating

layers of unidirectional roving and CFM. This

plate was manufactured by Creative Pultrusion

Inc. and designated as series 1625 material system.
The fibers in the CFM are relatively long, swirl,

and randomly oriented in the plane. The roving

layers consist of unidirectional fiber bundles that

run in the pultrusion direction along the entire

span of the member. The CFM and roving layers

can have different thicknesses through the cross-

section, depending on the level of reinforcement

and number of mats used. The fibers in the roving
and the CFM in the tested plate are both made

from E-glass material. The matrix is vinylester and

it is mixed with small clay particles. This matrix

medium, defined herein as the effective medium of

the vinylester polymer, clay particles, and voids or

microcracks, is considered as a nonlinear isotropic

material. The fiber volume fractions (FVFs) of the

unidirectional roving and the CFM were deter-
mined by a series of burn-out tests. The average

FVFs are 0.407 for the roving and 0.305 for the
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CFM. These are average FVF values calculated by

assuming a uniform thickness of all CFM or rov-

ing layers. The relative average thickness of the

CFM layers is (0.328/0.5), while the relative

thickness for the roving is (0.172/0.5). The com-

bined average FVF in the pultruded material, i.e.
in both the roving and CFM volumes, is 0.34.

There is an apparent number of void systems

spread inside the pultruded section as reported by

Haj-Ali et al. (2001). The existence of voids in

laminated FRP composites was reported in several

previous studies (Binshan et al., 1995; Wang and

Zureick, 1994). Moreover, the roving reinforce-

ment in pultruded materials can be unevenly dis-
tributed which can lead to a reduction in stiffness

and strength (Herakovich and Mirzadeh, 1991).

Haj-Ali and Kilic (2002) showed that an E-glass/

vinylester pultruded material system has a lower

initial elastic modulus in tension than the corre-

sponding compressive modulus. Also, the nonlin-

ear response of the pultruded material is softer in

tension than the behavior in compression.

3. Micromechanical models for the roving and CFM

layers

Nonlinear constitutive models are proposed in

this study in order to generate the through-thick-

ness effective stress–strain response at different
locations of the pultruded structural member. Two

approaches are viable. The first recognizes the

nonlinear behavior of each layer within the thick-

ness and applies separate micromechanical models

that are able to generate the 3D nonlinear re-

sponse. The second approach is to use constitutive

models that consider the overall homogenized

material as nonlinear orthotropic. This study ex-
amines both approaches for nonlinear modeling

of pultruded composites. These micromodels are

used for pultruded plates made from alternating

roving and CFM layers under general in-plane

loading. Nonlinear 3D micromechanical models

are formulated for the roving and the CFM layers.

An overall plane-stress condition is added as

a constraint to the combined set of 3D micro-
mechanical and constitutive equations of the two

micromodels.

A 3D nonlinear micromechanical model for the

roving layers is developed based on a rectangular
unit-cell (UC) model with four sub-cells used for

a unidirectional fiber reinforced material. This

model is used to idealize the roving layer as a pe-

riodic medium with arrays of fibers having a

square section. Fig. 1 describes the idealized peri-

odic medium along with the UC geometry. The

roving micromodel is derived by writing approxi-

mate traction and displacement continuity rela-
tions in terms of average stresses and strains in

the sub-cells. This micromechanical model yields

comparable results to those generated from the

method of cells that was proposed by Aboudi

(1991).

The long fibers are aligned in the x1 direction.
The other cross-section directions are referred to

as the transverse directions. The UC is divided into
four sub-cells due to symmetry. The traction and

displacement continuity relations between the sub-

cells are approximated in terms of the appropriate

components of the average stress (rðaÞ; a ¼ 1; 2;
3; 4) and strain (eðaÞ; a ¼ 1; 2; 3; 4) vectors in the

sub-cells. The overall average stress and strain

vectors for the UC are denoted by (�rr) and (�ee),
respectively.

The notations for the stress and strain vectors,

defined in this section, are:

rðaÞ
i

n oT

¼ fr11; r22; r33; s12; s23; r23gðaÞ

eðaÞi

n oT

¼ fe11; e22; e33; k12; k13; k23gðaÞ

i ¼ 1; . . . ; 6; a ¼ 1; . . . ; 4

ð1Þ

where (a) denotes the sub-cell number in the UC

and (i) denotes the stress or strain component.

Fig. 1. Roving UC.
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These are also referred herein as mode-i. The total

volume of the UC is taken to be equal to one. The

volumes of the four sub-cells are:

v1 ¼ hb; v2 ¼ ð1� hÞb
v3 ¼ hð1� bÞ; v4 ¼ ð1� hÞð1� bÞ ð2Þ

The axial strains are the same in all the sub-

cells. Therefore, the longitudinal incremental re-

lations (mode-1) are:

deð1Þ1 ¼ deð2Þ1 ¼ deð3Þ1 ¼ deð4Þ1 ¼ d�eeðRÞ
1

v1dr
ð1Þ
1 þ v2dr

ð2Þ
1 þ v3dr

ð3Þ
1 þ v4dr

ð4Þ
1 ¼ d�rrðRÞ

1

ð3Þ

Consideration of the interfaces with normals in

the x2 direction, yields the traction continuity

conditions for in-plane stress components 22 and

12, respectively. The corresponding strain com-

patibility conditions for these modes follow from

separately considering sub-cells (1) and (2), and

sub-cells (3) and (4), respectively. These relations

are used to express traction and compatibility re-
lations for the transverse stress and strain com-

ponents (22), mode-2, and for axial shear (12),

mode-4. For the case of direct transverse mode-2,

i.e. components (22), the continuity relations be-

tween the sub-cells are:

drð1Þ
2 ¼ drð2Þ

2

drð3Þ
2 ¼ drð4Þ

2

v1
v1 þ v2

deð1Þ2 þ v2
v1 þ v2

deð2Þ2 ¼ d�eeðRÞ
2

v3
v3 þ v4

deð3Þ2 þ v4
v3 þ v4

deð4Þ2 ¼ d�eeðRÞ
4

ð4Þ

For the in-plane shear (mode-4), the relations

are:

drð1Þ
4 ¼ drð2Þ

4

drð3Þ
4 ¼ drð4Þ

4

v1
v1 þ v2

deð1Þ4 þ v2
v1 þ v2

deð2Þ4 ¼ d�eeðRÞ
4

v3
v3 þ v4

deð3Þ4 þ v4
v3 þ v4

deð4Þ4 ¼ d�eeðRÞ
4

ð5Þ

Consideration of the interfaces with normals in

the x3 direction, yields the traction continuity

conditions for out-of-plane stress components 33

and 13, respectively. The corresponding strain

compatibility conditions for these modes follow

from separately considering sub-cells (1) and (3),

and sub-cells (2) and (4), respectively. These rela-

tions are expressed for the direct stress component

33 (mode-3), as:

drð1Þ
3 ¼ drð3Þ

3

drð2Þ
3 ¼ drð4Þ

3

v1
v1 þ v3

deð1Þ3 þ v3
v1 þ v3

deð3Þ3 ¼ d�eeðRÞ
3

v2
v2 þ v4

deð2Þ3 þ v4
v2 þ v4

deð4Þ3 ¼ d�eeðRÞ
3

ð6Þ

For the out-of-plane shear component 13

(mode-5), the relations are:

drð1Þ
5 ¼ drð3Þ

5

drð2Þ
5 ¼ drð4Þ

5

v1
v1 þ v3

deð1Þ5 þ v3
v1 þ v3

deð3Þ5 ¼ d�eeðRÞ
5

v2
v2 þ v4

deð2Þ5 þ v4
v2 þ v4

deð4Þ5 ¼ d�eeðRÞ
5

ð7Þ

Finally, in the transverse shear mode, mode-6,
the traction continuity at all the interfaces between

the sub-cells must be satisfied. Since this relation

is satisfied using the sub-cells� average stress, the

traction continuity and compatibility equations

for the transverse shear are:

drð1Þ
6 ¼ drð2Þ

6 ¼ drð3Þ
6 ¼ drð4Þ

6

v1de
ð1Þ
6 þ v2de

ð2Þ
6 þ v3de

ð3Þ
6 þ v4de

ð4Þ
6 ¼ d�eeðRÞ

6

ð8Þ

Eqs. (2)–(8) completely define the microme-
chanical relations between the stresses and the

strains in the sub-cells and the overall average

stresses and strains of the roving. These relations

are used in incremental (rate) form because the

constitutive relations in the matrix sub-cells are

nonlinear.

A simplified phenomenological model is pro-

posed for the CFM medium using weighted re-
sponses of a unidirectional layer in both axial and

transverse type modes. The CFM layer is a me-

dium where resin is reinforced with several mats of

relatively long swirl filaments. The fibers are ran-

domly distributed in the plane of the mat. The

proposed CFM micromodel generates the overall

effective nonlinear 3D response from average
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responses of the two unidirectional layers with

axial and transverse fiber orientations. The overall

in-plane average stress response is generated by

averaging the in-plane stress responses of the two

layers while the in-plane strain is the same in all

sub-cells. The FVF in the CFM is used to define
the relative thicknesses of the two layers. The

overall out-of-plane response is generated using

traction continuity between the two layers. The

CFM effective medium should be represented with

in-plane isotropic model. The current model does

satisfy this requirement when the fiber is isotropic.

In the case where the fiber is orthotropic, the re-

sulting effective properties should be integrated
and averaged in the radial direction.

The CFM UC model is shown in Fig. 2 as a

collection of four sub-cells. It is also convenient

to divide the sub-cells into two parts. The matrix-

mode layer (part-A) is composed of sub-cells (1)

and (2), while the fiber-mode layer (part-B) is

composed of sub-cells (3) and (4). The relative

thickness of each layer is defined using the FVF,
as shown in Fig. 2. The out-of-plane direction is

represented by the x3 axis. The formulation of the

CFM can be presented in terms of average

stresses and strains in sub-cells A and B as in-

termediate variables. Therefore, these two parts

or sub-cells can be considered in the CFM for-

mulation as two independent layers. The FVFs

within the two parts are the same and provide the
relations:

V1
V1 þ V2

¼ h ¼ vfc;
V4

V3 þ V4
¼ n ¼ vfc ð9Þ

The out-of-plane traction continuity and inter-

face displacement continuity, between parts-A and

B, are expressed by:

d�rrðCÞ
0 ¼ drðAÞ

0 ¼ drðBÞ
0

d�eeðCÞi ¼ deðAÞ
i ¼ deðBÞi

ð10Þ

where a CFM quantity is denoted by a (C) su-

perscript and an overbar is used to denote an

averaged variable. The homogenized in-plane
stresses and out-of-plane strains are taken as

weighted averages, using the FVF in the CFM, as:

d�rrðCÞ
i ¼ 1

V
VAdr

ðAÞ
i

�
þ VBdr

ðBÞ
i

�
d�eeðCÞ0 ¼ 1

V
VAde

ðAÞ
0

�
þ VBde

ðBÞ
0

� ð11Þ

Within the matrix-mode layer (part-A), the fol-

lowing relations for all stress and strain compo-

nents should be satisfied:

d�rrðAÞ ¼ drð1Þ ¼ drð2Þ

d�eeðAÞ ¼ 1

VA
V1deð1Þ
�

þ V2deð2Þ
� ð12Þ

The corresponding equations for the fiber-mode

layer (part-B) are:

d�rrðBÞ
0 ¼ d�rrð3Þ

0 ¼ d�rrð4Þ
0

d�eeðBÞi ¼ deð3Þi ¼ deð4Þi

d�rrðBÞ
i ¼ 1

VB
V3dr

ð3Þ
i

�
þ V4drð4Þ

i

�
d�eeðBÞ0 ¼ 1

VB
V3de

ð3Þ
0

�
þ V4de

ð4Þ
0

�
ð13Þ

Eqs. (9)–(13) define the 3D micromechanical

relations between the average stresses and strains

in the fiber and matrix sub-cells of the CFM layer.

These relations are used in an incremental form
because the constitutive relations in the two matrix

sub-cells are nonlinear. The linearized solution, in

the form of stresses and strains in the sub-cells, is

obtained from the incremental equations of both

CFM and roving micromodels. This is a trial state

solution that usually violates the nonlinear con-

stitutive relations. Once the constitutive relations

are satisfied and the correct state of stress is ob-
tained for the trial incremental strain, some trac-

tion continuity and strain compatibility equations

are then violated. These are used to form a residual

vector expressed using total stress and strain

quantities. The next step is to obtain a correctionFig. 2. CFM UC.
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to the trial state that minimizes the residual vector.

This process is repeated, i.e. calculations of the

constitutive and micromechanical relations, until

the converged solution satisfies both sets of equa-

tions numerically.

4. Calibration of the micromodels

The in situ linear and nonlinear material prop-

erties for the fiber and matrix constituents in the

roving and the CFM micromodels are assumed to

be the same. These properties are calibrated in two

steps. First, the fiber constituent is assumed linear
elastic with stiffness values usually available in the

literature. In the current study, the material have

the same E-glass fiber in both the roving and

CFM; the fiber properties are listed in Table 1.

However, determining the linear elastic properties

for the matrix constituent is not a straight forward

and there is not a unique method to achieve that.

In fact, the matrix medium is a randomly hetero-
geneous medium that includes polymeric matrix

and other additives, such as clay or microspheres.

In addition, the existence of voids and micro-

cracks, due to manufacturing is also lumped in the

effective property of this isotropic matrix phase.

The nonlinear material response of the composite

is attributed to the matrix and it is modeled using

the J2 deformation theory along with the Ram-
berg–Osgood nonlinear uniaxial representation. It

should be mentioned that the matrix sub-cells,

in both the roving and CFM micromodels, are

assumed to have the same linear and nonlinear

parameters. The V-notch shear test is used to

calibrate the nonlinear matrix parameters. Three

repeated V-notch tests were conducted in this

study and they are used to determine the in situ
Ramberg–Osgood nonlinear shear stress–strain

curve, as shown in Fig. 3. The three Ramberg–

Osgood parameters for the nonlinear matrix re-

sponse along with the linear elastic properties of

the fiber and the matrix complete the set of
properties needed for the proposed microme-

chanical models. All linear and nonlinear proper-

ties are listed in Table 1.

5. Nonlinear anisotropic macromodels for pultruded

composites

The purpose of this section is to apply existing

nonlinear orthotropic material models for the

multi-axial response of pultruded composites. Two

previously developed nonlinear orthotropic mac-

romodels are proposed for pultruded composites

under a state of plane stress. These models were

mainly used for laminated composites. The first

model is the Hahn and Tsai (1973) nonlinear
model for orthotropic lamina under a state of

plane stress. This model considers the nonlinear

response to be solely dependent on the axial-shear

Fig. 3. Shear response of E-glass/vinylester composite used to

calibrate the in situ Ramberg–Osgood equation for the matrix.

Table 1

Fiber and matrix linear and nonlinear elastic properties used in the 3D micromodels for roving and CFM (FVF in: roving

layers ¼ 0.407, CFM layers ¼ 0.305)

(Ramberg–Osgood)

E (1000 ksi) m (1000 ksi) b (ksi) n (ksi) s0 (ksi)

Fiber (E-glass) (isotropic) 10.5 0.25 –

Matrix (vinylesterþ fillers) (isotropic) 0.730 0.30 1 4.0 7.0
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stress. The only nonlinear strain component is

also the axial shear. As a result, the complemen-

tary energy function is composed of a quadratic

polynomial, representing linear stress–strain rela-

tions, and a fourth order term in the shear stress

representing the nonlinear inelastic shear strain.
The nonlinear parameters can be obtained by

the calibration of axial shear test data with the

Ramberg–Osgood (R–O) parametric curve. The

total strain–stress relation can be expressed for a

unidirectional lamina as:

e11
e22
c12

8<
:

9=
; ¼

1
E11

� m12
E11

0

1
E22

0

symm: 1
G12

2
64

3
75 r11

r22

s12

8<
:

9=
;

þ
0 0 0

0 0 0

0 0 S0
66

2
4

3
5 r11

r22

s12

8<
:

9=
; ð14Þ

where the additional compliance term for shear is:

S0
66 ¼

b
G12

s12
s0

� �n�1

ð15Þ

and the s0, b, and n are material parameters ob-
tained from the in-plane shear stress–strain of the

material. The above Ramberg–Osgood axial-shear

response is calibrated in this study using the V-

notch shear test results. Fig. 4 shows the experi-

mental results along with the fitted curve. The linear

elastic properties and nonlinear material para-

meters used in Eq. (15), for the tested E-glass/

vinylester material, are shown in Table 2. The

longitudinal, transverse, and shear initial elastic

moduli are determined from the experimental

compression results calculated according to ASTM

standards, Haj-Ali and Kilic (2002). The calibra-

tion was performed by using polynomial regression

in which the values of s0 and n were obtained for

the best curve fit.

The second nonlinear orthotropic model used in
this study was derived by Hashin et al. (1974). This

constitutive model is used for a transversely iso-

tropic medium under a state of plane stress. This

model assumes that nonlinear inelastic strains exist

only in the transverse and axial shear. The longi-

tudinal response is assumed to be linear. The in-

elastic part of the strains is assumed to depend on

quadratic functions in terms of both the axial shear
and transverse stresses. These inelastic strains are

defined by general quadratic stress functions mul-

tiplied by the corresponding deviatoric stress

component. The quadratic terms used involve the

stress invariants of a medium with transversely

isotropic symmetry. The coefficients and power of

these functions are obtained by comparing the

general form of the inelastic strain components
to the corresponding one-dimensional R–O repre-

sentations, separately for axial-shear and trans-

verse compression modes. The total stress–strain

relation for a lamina can be expressed as:

e11
e22
c12

8<
:

9=
; ¼

1
E11

� m12
E11

0

1
E22

0

symm: 1
G12

2
64

3
75 r11

r22

s12

8<
:

9=
;

þ
0 0 0

0 S0
22 0

0 0 S0
66

2
4

3
5 r11

r22

s12

8<
:

9=
; ð16Þ

where the above nonlinear inelastic terms are ex-

pressed as,

S0
22 ¼

1

E22

r22

ry

� �2
"

þ s12
sy

� �2
#ðm�1Þ

2

ð17ÞFig. 4. Ramberg–Osgood curve for the axial-shear stress–strain

test data.

Table 2

Effective properties used in the Hahn and Tsai material model

E11

(ksi)

E22

(ksi)

G12

(ksi)

m12
(ksi)

b
(ksi)

n

(ksi)

s0
(ksi)

2800 1838 645 0.30 1.0 5.0 15.0
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S0
66 ¼

1

G12

r22

ry

� �2 s12
sy

� �2
" #ðn�1Þ

2

ð18Þ

The Ramberg–Osgood parameters in Eq. (17),

ry and m, are obtained from the calibration with

the experimental transverse stress–strain curve in

compression. The compression stress–strain test

results, generated from transverse pultruded cou-

pons, along with the fitted R–O uniaxial curve are

shown in Fig. 5. The other Ramberg–Osgood pa-
rameters in Eq. (18), sy and n, are obtained from

in-plane shear response in the same manner used

for the Hahn and Tsai model, Fig. 3. The linear

and nonlinear material properties used in the

Hashin et al. model, for E-glass/vinylester pul-

truded material, are presented in Table 3. The

longitudinal, transverse, and shear moduli are the

average values of 3–5 repeated tests and are cal-
culated according to ASTM standards.

6. Nonlinear off-axis stress–strain response

The prediction capability of the three proposed

nonlinear models for pultruded composites is ex-

amined for off-axis coupons that are subject to

compressive loading. The objective of the off-axis

tests is to generate the nonlinear stress–strain be-

havior up to ultimate failure. Coupons were cut

from a pultruded plate such that the roving fibers

are oriented at a specified off-axis angle. The tested
coupons have the following off-axis angles: 0�, 15�,
30�, 45�, 60�, and 90�. A detailed information on

the off-axis tests and the geometry of the coupons

can be found in Haj-Ali and Kilic (2002). Each

nonlinear off-axis test was repeated 3–5 times.

Figs. 6–11 show the experimental results (with

repeated tests) and the predictions of both the

proposed 3D micromodel and the anisotropic
models. The proposed 3D micromodel predicts a

Table 3

Effective properties used in the Hashin et al. material model

E11

(ksi)

E22

(ksi)

G12

(ksi)

m12
(ksi)

m

(ksi)

n

(ksi)

sy
(ksi)

ry

(ksi)

2800 1838 645 0.30 6.0 5.0 15.0 30.0

Fig. 5. Ramberg–Osgood curve for the transverse compression

stress–strain test data.

Fig. 6. Stress–strain response from three material models for

off-axis h ¼ 0� pultruded coupon under compression.

Fig. 7. Stress–strain response from three material models for

off-axis h ¼ 15� pultruded coupon under compression.
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close response to the overall experimental results.
Hahn and Tsai model predicts a linear stress–

strain response in the case of 0� and 90� orienta-
tions. This linear behavior is expected because the

nonlinear effects in this model are only due to axial

shear stress. The Hashin et al. material model

captures well the nonlinear response, but it shows

a softer nonlinear behavior at higher strain mag-

nitudes for off-axis angles larger than 30�. It is
interesting to note the prediction from the 3D

micromodel for the 45� off-axis coupons deviates
from the experimental results for axial strains

larger than 1.5%. The calibration of the 3D mi-

cromodel is in a good agreement with the V-notch

effective shear results up to 2.5% strain, as shown

in Fig. 3. However, both macromodels were

successfully calibrated with the same shear results

up to 3.0% strain. This can explain why the mi-
cromodel did not perform as well as in the 45� case
beyond 1.5%. Despite this shortcoming, the overall

performance of the proposed micromodels is su-

perior when considering the complete response

range for all tested angles.

7. Conclusions

New 3D micromodels are derived for the non-

linear analysis of pultruded FRP composite mate-

rials. The nonlinear response of pultruded FRP

composites is examined both experimentally and

analytically by using different off-axis coupons in

Fig. 9. Stress–strain response from three material models for

off-axis h ¼ 45� pultruded coupon under compression.

Fig. 10. Stress–strain response from three material models for

off-axis h ¼ 60� pultruded coupon under compression.

Fig. 11. Stress–strain response from three material models for

off-axis h ¼ 90� pultruded coupon under compression.

Fig. 8. Stress–strain response from three material models for

off-axis h ¼ 30� pultruded coupon under compression.
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compression in order to predict the nonlinear re-

sponse under different multi-axial stress states. The

micromechanical models explicitly recognize the

response of the roving and CFM composite systems

(layers) and their fiber–matrix constituents within

the cross-section of the pultruded member. The
nonlinear orthotropic models of Hahn and Tsai,

and Hashin et al. are also calibrated and applied to

model the multi-axial response of the pultruded

coupons. A good agreement is observed between

the experimentally obtained material behavior

and the proposed micromodels for all off-axis

coupons. The nonlinear responses obtained from

the two orthotropic models are in good agreement
but not for all the tested off-axis coupons.
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