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Abstract

This paper presents a new approach to generate nonlinear and multi-axial constitutive models for fiber reinforced poly-
meric (FRP) composites using artificial neural networks (ANNSs). The new nonlinear ANN constitutive models are com-
plete and have been integrated with displacement-based FE software for the nonlinear analysis of composite structures.
The proposed ANN constitutive models are trained with experimental data obtained from off-axis tension/compression
and pure shear (Arcan) tests. The proposed ANN constitutive model is generated for plane-stress states with assumed
functional response in some parts of the multi-axial stress space with no experimental data. The ability of the trained
ANN models to predict material response is examined directly and through FE analysis of a notched composite plate.
The experimental part of this study involved coupon testing of thick-section pultruded FRP E-glass/polyester material.
Nonlinear response was pronounced including in the fiber direction due to the relatively low overall fiber volume fraction
(FVF). Notched composite plates were also tested to verify the FE, with ANN material models, to predict general non-
homogeneous responses at the structural level.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Thick-section FRP composites, such as those
manufactured by the pultrusion process, usually
have a relatively low fiber volume fraction (FVF)
with relatively thick-sections (e.g. from 0.3175 cm
to 2.54 cm). Thick-section composites can be com-
posed of multi-layers using unidirectional roving
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and continuous filament mat (CFM) layers that
are repeated through the thickness direction. They
exhibit nonlinear stress—strain behaviors due to the
low FVF and large thickness. In addition, nonlinear
response is magnified due to manufacturing anoma-
lies (e.g. inclusion, void and micro-crack). Haj-Ali
and Kilic (2002), Kilic and Haj-Ali (2003) investi-
gated the nonlinear behavior of thick-section and
multi-layered FRP composites and proposed non-
linear macro- and micro-mechanical models. Their
models were able to reasonably capture the multi-
axial response. El-Hajjar and Haj-Ali (2004)
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proposed a testing method to measure the in-plane
shear response of FRP composites under multi-axial
deformation using a modified Arcan test fixture.
Haj-Ali and Muliana (2003, 2004), Muliana and
Haj-Ali (2006) have proposed constitutive models
to generate the nonlinear mechanical and time-
dependent behavior of the FRP composite.

In order to approximate the complex material or
structural behaviors in composites, artificial neural
networks have been proposed as an alternative
modeling approach for both material and structural
behaviors due to their effectiveness, robustness, and
noise-tolerance. Artificial neural networks synthe-
sized with a number of training data can effectively
predict the nonlinear multi-axial stress—strain rela-
tions by capturing and generalizing complex behav-
iors in their connection weights among artificial
neurons, even though they are not easily approxi-
mated by conventional methods, e.g. Wasserman
(1989).

Pidaparti and Palakal (1993) were among the first
to use ANN as a constitutive model for composites.
Uni-axial and off-axis tests from angle-ply laminates
were used. Artificial neural networks were trained to
include off-axis angle, initial stress, and incremental
stress as input variables. They demonstrated that
their models can predict uni-axial stress—strain
behaviors with different off-axis angle and verified
them with experiments. However, these ANN mod-
els were limited because they cannot provide full
multi-axial  plane-stress constitutive models,
required to perform structural analysis of laminated
composites. Therefore, there is a need for a full and
complete nonlinear ANN material model that can
cover the entire nonlinear stress—strain spectrum,
including the tensile-compression-shear stress paths.
Okafor et al. (1996) used ANN to predict the delam-
ination length in laminated composite beams. Their
ANN models were trained with simulation results
(i.e. normalized natural frequencies of damaged
composite beams as a function of the induced
delamination length for first four modes). They
found that a learning rate of 0.3 is proper for their
ANNSs and compared the predicted delamination
length with corresponding test data. Chakraborty
(2005) proposed an ANN delamination model in
order to predict the shape, size, and location of del-
aminations in laminated specimens with an elliptical
embedded delamination. Finite element simulations
were used to generate the ANN training data with
different delamination geometry and location as
output variables. The natural frequencies for up to

10 first modes were used as input variables. The
trained ANN model was able to predict FE results
for delamination cases that were not used in the
training process. This ANN modeling approach
can be used for future NDE damage detection in
structural composites. Ghaboussi et al. (1998) sug-
gested an effective ANN training method, which is
termed Autoprogressive Training in order to effec-
tively train ANNs when a small number of training
data (e.g. experimental responses measured from
structural tests) are available. They used experimen-
tal results performed on laminated graphite/epoxy
plates with a hole to train a neural network material
model using the Autoprogressive training method
and verify the trained ANN model by comparing
to other experimental results. Ootao et al. (1999)
applied a neural network approach to optimize the
material composition of functionally graded mate-
rial with respect to the thermal stress distribution
in a hollow circular cylinder. Haj-Ali et al. (2001)
used ANNs to generate nonlinear micro-mechanical
models for unidirectional fiber reinforced materials
including damage behavior in the form of interfacial
cracks between the fiber and matrix. The crack
angle was used as a damage parameter in their unit
cell (UC) models. They demonstrated the effective-
ness of their ANN models by comparing with FE
results that were used in the training process. Zhang
et al. (2002) investigated the correlation between
temperature and dynamic mechanical properties
(i.e. storage modulus and damping) for short carbon
fiber composites with two polymeric matrices,
PTFE and PEEK. They used ANN to generate
those relations and showed good approximation
when compared with experimental results.
Artificial neural networks have also been used in
“inverse problems”. In this mode, the trained ANN
is not only used to approximate the response, but
also applied directly/indirectly to generate the best
parameters that minimize the error between its
input/output spectrums against a given measured
data. Muliana et al. (2002) proposed ANNSs to gen-
erate models for the monotonic part of the nanoin-
dentation response (i.e. load-deflection curves) of a
substrate or film. They showed the potential of
using their trained ANN models for a wide range
of nonlinear materials. Their ANN models can be
used to extract the nonlinear stress—strain parame-
ters of the film or substrate from a given nanoinden-
tation response. Similar study has been performed
by Huber et al. (2002). The latter also used ANNs
to generate material parameters of the film and
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substrate from indirect nanoindentation responses,
and relied on both monotonic and unloading por-
tions of the indentation curve.

The goal of this study is to develop new ANN
constitutive models, which can generate nonlinear
multi-axial stress—strain behaviors of FRP compos-
ites for the entire plane-stress constitutive domain.
Toward this goal, different structural ANN consti-
tutive models are generated and trained with exper-
imental data obtained from off-axis tension/
compression tests and pure shear tests. Their pre-
dictability and efficiency are examined by compar-
ing experimental data in the local and global
material directions. In addition, the proposed
ANN is synthesized with FEA software as a user-
defined material module for FRP composites. The
FE software, integrated with trained ANN constitu-
tive models, is used to simulate the response of a
notched composite plate. Structural responses (e.g.
stress—strain behavior), from the FE simulation,
are compared with experimental results in order to
demonstrate the ability of the ANN constitutive
model to generate full-span multi-axial behavior
and that it can be coupled with standard FEA soft-
ware as user-defined nonlinear material models.

2. Proposed ANN nonlinear constitutive models

The proposed ANN material models are illus-
trated in Fig. 1. It describes a state of plane—stress
for a layer or effective state in multiple orthotropic
layers. The objective of the trained ANN is to gen-
erate multi-axial stress—strain relations. This can be
achieved in several ways by using different ANN
structures, e.g. type of input and outputs, incremen-
tal, or total variables. In this study, a general four-
layer feed-forward ANN structure is used. The four-
layers consist of one input, two feed-forward hidden
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Fig. 1. Schematic drawing of a typical feed-forward 4-layer ANN
structure for plane-stress nonlinear material models.
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Fig. 2. Schematic drawing of two ANN general models using
total and/or inelastic strain. The second approach in (b) is to
generate ANNs for each individual output variable.

layers, and one output layer. Fig. 2 shows a sche-
matic drawing of different ANN structures used in
this study. The training process is carried out using
a relatively large set of input and output data. The
ANN structure is initially composed of a small
number of neurons in the two hidden layers. The
training algorithm developed in this study allows
adding neurons in the hidden layers at specified
intervals during the training. Fig. 1 illustrates the
adaptive nature during the ANN training. The
developed software relies on the conjugate gradient
method to minimize the total error and find the
internal connection weights, e.g. Wasserman
(1989). Four different combination of ANN models
are used in this study as shown in Table 2. The total
error definition is expressed as:

1 2
errorzEnZ;ZHTi—OiH (1)

where 7 and O are input and output vectors.

Four types of ANNs were generated with differ-
ent outputs. All four ANNs have the same input:
three stress components. These ANNs are classified
based on their scalar or vector output and using
total or inelastic strains.

3. Coupon tests for stress—strain training data

Training data for the proposed ANNs were col-
lected from off-axis compression and tension tests
performed with coupons cut from a monolithic
composite plate manufactured by pultrusion process
as shown in Fig. 3. Haj-Ali and Kilic (2002) used
similar tests to calibrate micromodels for this mate-
rial. In addition to the off-axis tests, limited axial-
shear stress—strain relations were generated using a
modified Arcan fixture developed by El-Hajjar and
Haj-Ali (2004). All in-plane stress—strain data sets
were collected up to ultimate failure state using
rosette strain gages (0°, 45° and 90° strain direc-
tions) installed at the center of each coupon and
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Fig. 3. Off-axis and Arcan bi-axial coupon tests performed to
generate multi-axial stress—strain data needed for the ANN
training.

aligned with the loading axis. The stress and strain
test data is usually in the global coupon system.
The test data is transformed in the local material
system using two separate in-plane stress and strain
transformations. The local transformed stress and
strain vectors are coupled for different loading levels
to train the proposed ANN models that can gener-
ate and span all continuous paths of multi-axial
stress—strain behaviors. The inelastic strain data
needed for two of the ANNs was generated by sub-
tracting the linear strain parts calculated using the
orthotropic compliances of the material from the
measured total strains. The compliance properties
used in the later calculations for the inelastic strains
were reported by El-Hajjar and Haj-Ali (2004) and
shown in Table 1. The overall FVF averaged for
the entire section is 0.34.

Fig. 4 shows the plane formed by the axial and
transverse stress paths. The lines drawn in the differ-
ent quadrants illustrate the experimental applied
stress path and at what point it reached its ultimate
failure filled circle. These stresses are all in the local
material direction. The off-axis tension and com-
pression tests produced tension-tension and com-
pression—compression uni-axial and transverse
stresses in addition to shear. The modified Arcan
test, El-Hajjar and Haj-Ali (2004), was used in this
study for pure shear mode. No tests were performed
for the mixed tension—compression and compres-

Table 1

Material properties of FRP composites

Unit Ell E22 Gl12 V12
MPa (ksi) 18,810 (2730) 11,300 (1640) 3583 (520) 0.285
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Fig. 4. Axial and transverse stress paths (g1, and 07;).

sion—tension cases. These cannot be generated from
the off-axis tests and may need a special multi-axial
testing apparatus, which was not available. This
testing limitation is overcome by using the fact that
the axial stiffness is larger than the transverse. We
can assume that the total strain in the tension-ten-
sion case is the same in magnitude to that of the
compression tension case. This assumption can also
be applied by equating the strain magnitudes of the
compression—compression cases to the tension—
compression strains as illustrated in Fig. 4. Figs. 5
and 6 show the axial and transverse stress paths
combined with the pure shear case obtained from
the modified Arcan test.

The size and type of the ANNs generated in this
study are summarized in Table 2. The initial number
of neurons in the two hidden layers was ten. As the
training progressed and the error has not decreased,
the training algorithm allows for adding more

o11 (MPa)
-200 200
15 T T T T T T =
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Fig. 5. Axial and shear stress paths (o;; and 7,) from off-axis
tests. The pure shear case was obtained from the modified Arcan
test.
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Fig. 6. Transverse and shear stress paths (o5, and 7;,) from off-
axis tests. The pure shear case was obtained from the modified
Arcan test.

Table 2

Training cases for different ANN structures
ANN Hidden Initial Final
output layer neuron neuron

number number number

Type 1  vector/ 2 10 29
total

Type 2 vector/ 2 10 25
inelastic

Type 3 scalar/ 2 (10, 10, 10) (26, 25, 27)
total

Type 4  scalar/ 2 (10, 10, 10) (24, 23, 25)
inelastic

Note that there are three ANNSs for the single-variable output in
cases 3 and 4.

neurons to allow for further reduction in error (or
minimization of error). The range of final ANN is
roughly around 26 neurons for the data set used
(20,000 vectors) and for a similar specified global
training error criterion (0.5%).

Next, the trained ANN models are used to gener-
ate multi-axial stress—strain behaviors and are com-
pared with available experimental results. Fig. 7
shows the transverse tension stress—strain behaviors
obtained from the trained ANNs and test results
from the different off-axis coupons (i.e. 0= 30°,
45°, 60° and 90°) in their local material direction.
The overall responses represented by the trained
ANNSs are very close to the experimental responses
for most of the cases except for an off-axis angle of
30°, where the error is the largest (see more discussion
at the end of this section). In this case, the ANN
response is directly compared against the same data
that was used for training and we are examining the
ability of the trained ANN to extrapolate the training
data. The term “ANN prediction” is used in this

T T T T T T T T T T
[ —— Experimental data = 90°
1020F - ANN type-1 6=90
R ANN (ype-2 o — 80.0
F  ----  ANNtype-3
=== ANN type-4 4
=80 &
2 1 E
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0.0 1.2

£22(%)

Fig. 7. ANN representation of transverse stress—strain in the
local material direction after training.

paper to describe the ANN response against the effec-
tive global material behavior or as a complete multi-
axial nonlinear constitute model able to predict all in-
plane strain components when given the in-plane
stress components. The 30° case, in Fig. 7, has the
largest error compared to all other trained stress—
strain paths that are not shown. The transverse
stress—strain responses generated from the single-
variable output ANNs (cases 3 and 4) are very close
to the experimental results as that of the vector out-
put structural ANNSs (i.e. cases 1 and 2). However,
it is not clear which ANN can produce the best
response as the output of all of them agrees well with
the experimental observations. Using the transfor-
mation of the local material (ANN) stresses and
strains, the global nominal stress—strain responses
are generated for each off-axis case. Fig. 8 shows
the nominal off-axis tension responses expanded with
the experimental results. The positive horizontal axis
is used to plot the global axial strain, while the neg-
ative part is used for the transverse strain. The axial
stress in the global direction is plotted against both
the axial and transverse (Poisson’s effect) strains.
The overall transformed ANN responses are much
closer to the experimental results once they are
described in the global material direction. It is inter-
esting that the proposed ANNs can generate much
closer response to the experiment for the axial strain
(e11) case than for the transverse strain (&,,) case. In
addition, the worst prediction case (i.e. local stress—
strain behaviors at an off-axis angle of 30°) also pro-
duces a good agreement with experiments once they
are converted into the global responses. Fig. 9 also
shows the off-axis compression responses predicted
by the trained ANNs and experiments. Similar to
the tension responses, the global axial stress is plot-
ted against both axial and transverse strain. In the
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Fig. 9. Global compression stress versus direct and poisson’s
strains calculated from the local response of the trained ANNSs.

compression case, the proposed ANNs can generate
much closer responses to experiments than the ten-
sion case. As a result, it is demonstrated that the
trained ANNs can generate good overall responses
for all experimental cases. Good agreement with
experimental data has been observed relatively more
in the global responses. This can be explained by the
reduced sensitivity when the stresses and strains are
transferred to the global coupon-level stress—strain
states. For example, this may explain why while
the error is relatively larger for the local 30-degree
case (Fig. 7), the combined off-axis response for this
case shows good comparison in the global direction.
That is, the transverse stress component (normal to
the fiber) in this direction is smaller compared to
the axial stress component and as such, its error is
less pronounced.

4. Nonlinear finite element analysis coupled with
ANN constitutive models

The trained nonlinear ANN constitutive models
should be suitable for integration as nonlinear mod-

els at the Gaussian material points in a general pur-
pose FE code. Otherwise, the generated ANN
models are not complete as they provide for a lim-
ited and partial approximation in parts of the
response spectrum. The trained ANNs are imple-
mented as user-defined nonlinear material models
within the FEA software. The ABAQUS general
purpose FEA code is coupled with the trained
ANN material module for FRP composites. The
nonlinear constitutive environment in displace-
ment-based FE typically requires the user material
to determine the current stress state given the strain
increment and the previous history including strain,
stress, time, and other state variables. Classical
inelastic mechanics models are formulated using
stress variables. This was the approach taken in this
study with the input to the ANN. However, since
the FE environment directly supplies the displace-
ment gradients (strains), it makes sense to generate
ANNs that have strain as an input (with/without
history) and stresses as output. This type of ANN
has the potential of dramatically reducing the com-
putational (iterative) effort that is required at the
material level and dramatically increasing the com-
putational efficiency. However, it should be men-
tioned that the uniqueness of the computed stress
state must be accounted for computationally or by
the structure of the ANN itself. The strain and
stress-based input ANNs were coupled with the
FE code, and verification of their performance
was needed. Towards that goal, a notched compos-
ite plate with an open hole was tested in order to
examine the simulation results from the coupled
FE with ANN material models. Fig. 10 shows an
FE model used in this simulation. A quarter shape
of a rectangular coupon is modeled. The width
and height are 0.875 in. (2.22cm) and 6 in.
(15.24 cm), respectively. The thickness is 0.5 in
(1.27cm) and the hole radius is 0.25 in.
(0.635 cm). The finite element model is composed
of approximately 600 nodes and 550 plane-stress
type elements (CPS4R). This FE model is imple-
mented with the ANN user material modules and
the new coupled ANN-FE code was verified for
simple homogeneous cases. The choice of structural
modeling for a transversely oriented thick-section
and notched composite plate was made because of
the relatively large nonlinear responses expected.
Remote uniform displacement is applied.

Fig. 11 shows the experimental set-up for the
notched plate and schematic drawings of the test
and FE mesh. The upper and lower parts of the cou-
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Fig. 10. Geometry of the quarter FE model with hole.

pon were gripped by the jaws of MTS-810. Mono-
tonic tension was applied as a uniform end displace-
ment along with relative displacement that was
acquired from a 2” extensometer attached on the
specimen, as shown in Fig. 12b, and located sym-
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Fig. 12. Prediction for the remote stress—strain curves obtained
from experiments and FE simulations implemented with the
proposed ANN material model.

metrically about the mid-plane. Fig. 12 shows the
remote nominal stress versus the normalized exten-
someter displacement (strain) for both the FE-
ANN simulation and the test. The FE-FANN cou-
pled model is capable of predicting the overall
behavior of the composite plate, while the experi-
mental and FE-ANN extensometer response is lin-
ear. The local response around the open hole is
nonlinear as shown in Fig. 13.

The FE-ANN simulations are limited to the range
of the trained ANN material models that are about
2% strain in axial and transverse directions. This
explains why the global response is linear, and the
local response can be nonlinear. Fig. 14 schemati-
cally illustrates the unstable fluctuating ANN
response beyond the training limit points. This leads
to unsmooth FE convergence and ultimately diver-
gence. The fact that the local stress has exceeded
the training ANN level indicates the presence of

)

Location where deformation is measured

Extensomete

il
3

(¢) FE simulation

Fig. 11. Schematic drawing of the experiment and FE simulation used in the verification.
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Fig. 14. Schematic drawing of the ANN response out of range of
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local damage. Artificial neural network with damage
capability is beyond the scope of this paper.

5. Conclusions

A new approach to generate nonlinear multi-
axial ANN constitutive models for FRP composites
has been demonstrated. The proposed ANN mate-
rial models were trained from select experimental
tests and including off-axis tension and compression
along with a modified Arcan test for shear stress—
strain response. The ANN material models are
effective and can be constructed using the total
strain or the inelastic strain parts. In addition, vec-
tor-based and single-variable output type ANNs
can be used. The new constitutive models are lim-
ited within the training data range. They can be
effectively implemented and coupled with FE analy-
sis to provide for general nonlinear material
response at the Gaussian integration points. The
proposed FE-ANN simulation code can be used

for the analysis of layered composite plate and shell
structures. The fully developed nonlinear ANN
constitutive models can be extended for damage
and time-dependent behavior.
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