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DESTRUCTIVE AND NON-DESTRUCTIVE TESTING OF BRIDGE J857 
PHELPS COUNTY, MISSOURI 

VOLUME II 
FEASIBILITY STUDY ON DAMAGE DETECTION 

 OF RC STRUCTURES USING DYNAMIC  
SIGNATURE TESTS 

 

EXECUTIVE SUMMARY 

 
Dynamic signature tests have been widely used in aerospace and mechanical 

engineering to detect damage in aircrafts and mechanical systems. Their applications to 
the reinforced concrete (RC) structures in civil engineering, especially full-scale or 
prototype concrete structures, have a more recent origin. In this report, this technique is 
further verified by statically and dynamically testing in parallel three full-scale RC beams 
and a solid deck of Bridge J857 in Missouri. A new damage indicator is developed 
specifically for use in RC structures. The relation in transfer functions between harmonic 
and swept-sine tests is studied extensively so that a single swept-sine test can be used to 
represent a series of harmonic tests. 

Emphasis is placed upon the fundamental frequency and modal damping in this 
study. They are identified from the transfer functions of deflection and/or acceleration of 
RC structures, representing the relation between a response quantity and the excitation 
frequency in harmonic tests. Damage was introduced by applying a concentrated load at 
midspan of a simply supported beam or bridge deck with a hydraulic actuator. Forced 
vibration tests with a mechanical oscillator were conducted to obtain various transfer 
functions. Each test was performed under a sinusoidal load of one excitation frequency. 
Surprisingly, it was observed from laboratory tests that a transfer function determined 
from a series of harmonic tests with the excitation frequency increasing in sequence 
considerably differs from the one with the excitation frequency decreasing when a RC 
specimen under testing cracks severely. The resonant frequency significantly shifts from 
one case to another even though both are evaluated for one state of damage in the 
specimen. Furthermore, the shift in resonant frequency disappeared after the specimen 
was subjected to vibration up to about half an hour and therefore represented the transient 
property of a newly damaged specimen. The maximum shift in resonant frequency 
happens at the beginning of dynamic tests and is well correlated with the severity of 
damage. Thus, the frequency shift is an effective damage indicator resulting from this 
study, which requires no baseline to detect damage. In addition, the frequency shift 
mainly reflects the unstable surface condition along cracks and therefore is significantly 
more sensitive to the location of damage than the commonly used indicator --- change in 
natural frequency from one damage state to another. Together with the change in natural 
frequency, the frequency shift may provide a viable tool in detecting the severity and 
localization of damage in concrete structures. 
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Due to repetitious work and time-consuming effort to determine a transfer 
function using harmonic tests, the behaviors of RC structures under swept-sine loads are 
studied in great detail. The excitation frequency in swept-sine loads is considered to be 
linearly increasing and then decreasing with time. When the frequency rate of the 
increasing or decreasing range is sufficiently high, the beating phenomenon appears 
immediately after the resonance. To avoid the occurrence of the beating phenomenon and 
ensure the accuracy in determining the natural frequency of a RC structure, it is 
recommended that the frequency rate be limited less than f1

2/2000 in which f1 is the 
fundamental frequency of the structure. Based on analytical study, the resonant 
frequency, resonant acceleration and damping ratio determined from harmonic tests are 
respectively related to those from swept-sine tests. These relations are validated using 
experimental data and show reasonable accuracy in predicting the quantity of interest 
corresponding to harmonic tests. 

The final report consists of three volumes.  The current Volume (Volume II) 
focuses on the laboratory and field dynamic tests. Volume I focuses on the strengthening 
and testing to failure of the three decks of the bridge. Volume III focuses on the 
strengthening and testing to failure of the bridge piers. 
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NOTATION 

 
a = height of stress block (in). 
As = area of tension reinforcement (in2). 
Ah =Constant load amplitude under harmonic tests (lb). 
b   = width of beam (in). 
c = height of neutral axis (in) or phase difference between a swept-sine and a 

sinusoidal load (lb). 
C = compress force (lb). 
d = distance from the extreme compression side to the centroid of tension 

reinforcement (in). 
E = modulus of elasticity (psi). 

sE  = modulus of elasticity of steel (psi). 
f = Excitation frequency of shaker (Hz). 

1f  = fundamental engineering frequency or frequency corresponding to lower bound 
of 50% power in halfpower method (Hz). 

f2 = frequency corresponding to higher lower bound of 50% power in halfpower 
method (Hz). 

fn =Resonant frequency obtained fromtransfer function (Hz). 
'

cf  = compressive strength of concrete (psi). 
pf  = engineering frequency of beam with preload (Hz). 

rf  = modulus of rupture of concrete (psi). 
sf  = stress in tension reinforcement (psi). 

fswept  = Resonant frequency of a beam identified with a swept-sine test (Hz). 
fsine  = Resonant frequency under harmonic loads or natural frequency  

of the beam (Hz). 
yf  = yielding strain of steel rebars (psi). 

g = gravitational acceleration (386.0 in/sec2). 
h  = height of beam (in). 
I = moment of inertia of uncracked beam cross section (in4).  

crI  = moment of inertia of transferred cross section (in4). 
eI  = effective moment of inertia of beam cross section (in4). 
gI  = moment of inertia of gross section of beam (in4). 

k   = stiffness constant of simply supported beam (in/lb). 
L = length of beam (ft).  

aM  = applied moment on beam by static load (k-ft). 
crM  = cracking moment of beam section (k-ft).  
pM  = mass of preload (lb.sec2/in). 

uM  = moment strength of beam section (k-ft). 
MF  = modification factor of load amplitude under swept-sine tests. 

0P  = amplitude of force induced by shaker (lb). 
preP  = preload (lb). 
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sP  = static load applied on beam (kips). 
serP  = service load of bridge deck (lb). 

P(t)  = Swept-sine dynamic load (lb). 
Pu = load carrying capacity of beam (kips). 
Q  = quality factor in halfpower method. 
r’  = Increasing or decreasing rate of the operating frequency (Hz/sec). 
r = Increasing or decreasing rate of the excitation frequency (Hz/sec). 
t  = Time (sec). 
T = tension force (lb). 
W = weight of beam (lb). 
Wp = weight of lumped mass (preload) (lb). 

Dy  =dynamic deflection of beam (in). 
maxDy  = maximum deflection of beam (in). 
maxDy��  = maximum acceleration of beam (in/sec2). 

α  = crack related constant. 
δA  = Relative error in resonant acceleration. 
δf  = Relative error in resonant frequency. 
δζ  = Relative error in damping ratio. 

cuε  = ultimate strain of concrete (in/in). 
sε  = strain in tension reinforcement (in/in). 

θ  = angle between eccentric masses (rad). 
ξ  = damping ratio. 
ρ  = mass of beam per unit length (lb.sec2/in2). 
φ  = phase angle (rad). 

1ω  = fundamental circular frequency (rad/sec). 
Ω  = applied frequency of shaker (rad/sec). 

f∆  = frequency shift (Hz). 
1Φ  = mode shape. 
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1. INTRODUCTION 
 

During its service life, a transportation structure may be subject to damage in 
addition to aging deterioration. The damage may result from overloading, truck collision 
or natural effects such as tornadoes and earthquakes (Doebling, et al 1996, Chang, 1997, 
Sanayei, 1991). Detection of damage in a structure can help engineers more accurately 
assess the structure condition immediately after an accident or make a proper decision 
whether to retrofit or replace the damaged structure. Among various detection techniques, 
the dynamic signature test is one of the most popular nondestructive evaluation methods, 
especially in mechanical and aerospace engineering (Yao, 1992, Stubbs, 1987, Schulz, 
1996). It can detect the global damage occurring in a structure and sometimes locate the 
damage area without interrupting the normal operation of the structure. 

The existence of damage in structures will modify the vibrational characteristics 
of the structures such as natural frequencies, mode shapes and modal damping ratio. 
These parameters can be extracted from the structural dynamic responses of model tests 
(Ewins, 1984, Salawu, 1995). Their differences between two consecutive tests reflect 
possible damage in the structures during the interval period and may be used to identify 
the severity of damage and location. A series of repeated dynamic tests over several years 
for the purposes of identifying any damage in structures are referred to as the dynamic 
signature tests in this report. Among the various parameters, the natural frequency is 
widely used as a reliable indicator of damage occurring in a structure since it can be 
readily identified from model tests. If damage occurs in a structure, stiffness degradation 
will take place, which accordingly causes the change of resonant frequencies for various 
modes. The significant reduction in stiffness can be inferred when the measured 
resonance frequencies are substantially lower than the baseline values (usually defined as 
frequencies in the undamaged state). A minimum of 5% change in frequency is necessary 
to draw a convincing conclusion (Salawu, 1997). 

The fundamental frequency tends to capture the global changes in a structure and 
is less sensitive to local modification to the structure. Since the global changes are often 
related to the structural integrity, the change in fundamental frequency can thus be used 
to assess the structural safety. Damage may be located in conjunction with other methods, 
such as the acoustic emission, ultrasonic, magnetic particle, and the eddy-current method. 

The objective of this project is to verify the feasibility of using dynamic signature 
tests to assess the condition of reinforced concrete (RC) structures unstrengthened and 
strengthened with externally bonded CFRP sheets. Static and dynamic tests are conducted 
in parallel on three reinforced concrete beams in lab. The deflection and acceleration time 
history responses at different points of the beam are recorded when the beams are 
subjected to harmonic loads of various frequencies. These responses are then processed 
to extract the transfer functions, from which the resonant frequencies and damping ratios 
are determined. To expedite the process of dynamic tests, swept-sine tests are also carried 
out and their results are compared with the harmonic tests. Change in frequency before 
and after a static load is applied is correlated with the severity of damage, which is 
represented by the static load in this study. 
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2. THEORETICAL BACKGROUND ON DYNAMIC TESTS 
 

2.1. FUNDAMENTAL FREQUENCY OF SIMPLY-SUPPORTED BEAMS 
The fundamental frequency and mode shape of a uniform, simply-supported beam 

can be formulated as follows (Thompson, 1985): 
 

ρ
πω

EI
L

2
1 )(=   (rad/sec)                                            (2.1) 

 

L
xx πsin)(1 =Φ                                                     (2.2) 

 
where ρ  is the mass density of the beam per unit length (lb.sec2/in2), E is the modulus of 

elasticity of concrete (=57000 '
cf  psi), I is the moment of inertia of the cross section of 

the beam, L denotes the span length, and '
cf  represents the compressive strength of 

concrete. The engineering frequency 
π

ω
2

1
1 =f  with a unit of Hz. 

For the unstrengthened beam to be discussed in Section 3.1, L=19.0 ft, I=7914.5 
in4, '

cf =5770 psi, and ρ =0.06114 lb.sec2/in2. The fundamental frequency of the beam 
can then be determined from Eq. (2.1) as f1=22.3 Hz. 

When a lumped mass Mp is attached at midspan of the beam, the fundamental 
frequency of the beam plus the mass can be expressed into (Thompson, 1985): 

 

WW
f

LM
ff

pp
p /21)/(21

11

+
=

+
=

ρ
                                    (2.3) 

 
in which Wp and W denote the weight of the lumped mass and the weight of the beam 
respectively. 
 
2.2. DYNAMIC LOAD 

The dynamic load used for the test of the beams was induced by a mechanical 
oscillator (shaker). The shaker utilizes the centrifugal force of two unbalanced masses to 
generate a variable force which can be expressed into: 

 
tPtP Ω= sin)( 0 .                                                      (2.4) 

 
In the equation above, Ω is the forcing frequency in rad/sec and P0  represents the 

amplitude of the force which can be further determined by: 
)2/sin(403.0 22

0 θπ ×××= fP  lb                               (2.5) 
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The quantity θ in Eq.(2.5) is the angle between eccentric masses and f is the 
operating speed of the shaker in cycles per second. When the shaker is operated at a 
constant speed, Ω=2πf.  

During the dynamic tests, a RC beam vibrates up and down periodically. To 
prevent it from jumping, the beam shall always be in contact with its supports for the 
entire duration of dynamic tests. This can be guaranteed by limiting the dynamic 
acceleration within the level of the gravitational acceleration.  

The midspan deflection of the beam (first mode approximation) under the 
dynamic load described in Eq. (2.4) can be calculated from: 

 

2

1

2
2

1

2

0

)2()1(

/)sin(

ω
ξ

ω

φ
Ω+Ω−

+Ω
=

ktP
yD                                              (2.6) 

 
whereξ  is the damping ratio of the beam, φ is the phase angle of the deflection 

with respect to the dynamic load, and k denotes the stiffness of the beam at midspan 

equal to 348
L
EI . At resonance, ω=Ω 1. The maximum deflection amplitude can therefore 

be simplified into: 
 

ξ2
1

max ×=
k
P

y o
D  .                                                        (2.7) 

 
Correspondingly, the maximum acceleration is equal to: 

 

max
2

max DD yy Ω=�� = 
ξ

ω
2

2
1×

k
Po .                                           (2.8) 

 
To avoid the beam�s uplifting from its supports, the maximum acceleration must 

be less than the gravitational acceleration. That is:  
 

gyD ≤max��                                                  (2.9) 
or  

2
10 /2 ωξkgP ≤ .                                            (2.10) 

 
It is anticipated that the largest acceleration of a beam occurs when the beam 

behaves elastically or experiences minor cracking. Therefore, it is reasonable to assume 
2% of critical damping to estimate the amplitude of dynamic loads. Under these 
circumstances, 0.1082.140386*136610*02.0*2 2

0 =≤P lb. For the harmonic tests of 
the RC beams in this study, P0=92.89 lb was used which corresponds to �18=θ  at 
resonance. 
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2.3. THE CONCEPT OF PRELOAD 
Flexural and shear cracks develop in a RC beam when subjected to high tensile 

stresses. It is likely that a cracked beam under dynamic loads vibrates in a nonlinear 
fashion due to the close-and-open nature of cracks. For consistent test results and the ease 
of interpreting the test data using the linear vibration theory, the concept of preloading 
the beam is introduced. The effect of the preload is to keep the cracks open during the 
entire period of the dynamic tests.  

The level of preload is determined based on the maximum service load that a RC 
beam is expected to carry in its life span. The goal is to avoid any potential damage of the 
tested beam as a result of preloading and dynamical loading since the dynamic signature 
tests are non-destructive. To this endeavor, the preload (Ppre) plus the amplified dynamic 
load )2/(0 ξP  must not exceed the equivalent service load at midspan (Pser). That is: 
 

serpre PPP ≤×+
ξ2
1

0  .                                               (2.11) 

 
The RC beams tested in this study represent the prototype of one strip of a solid 

deck (Mayo, 1999). The equivalent service load at midspan was estimated to be 
Pser=9.1kips.  
 

 
Figure 2.1 Steel plates as preload 

 
Eq. (2.11) indicates that the maximum preload decreases as the damping ratio ξ 

decreases. For a consistent estimation, 2% of critical damping is used and P0=92.89 lb as 
determined in Section 2.2. Therefore, the maximum preload before inducing additional 
cracking in concrete is computed as: 

Ppre=Pser- )2/(0 ξP =(9100-92.89)/(2*0.02)=6778.0 lb. For the beam tests in this 
project, a maximum preload of 2680 lb was used. This preload represents about 50% of 
the weight of one beam. During the tests, the preload was simulated by steel plates 
mounted on the beam near the center point at both sides of the shaker as shown in Fig. 
2.1.  
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2.4. IDENTIFICATION OF FREQUENCY AND DAMPING 
The natural frequency and damping of a RC beam can be identified from a 

transfer function of deflection or acceleration at one point of the beam. The transfer 
function is a plot of the peak response as a function of the excitation frequency of 
harmonic loads as schematically shown in Fig. 2.2. The particular excitation frequency 
corresponding to the largest peak response is the natural frequency of the beam (Lyon, 
1995, James, 1994). 

The damping ratio can be determined with the quality factor method (James, 
1994) or the half power method. As presented in Fig. 2.2, the maximum peak response 
(ratio) is defined as: 

ξ2
1=Q                                                              (2.12) 

 
from which the damping ratio can be estimated. In the halfpower method, two 
frequencies corresponding to 50% of the maximum power or 70.7% of the maximum 
response are located on the transfer function. They are designated as f1 and f2 in Fig. 2. 2. 
The damping ratio can then be determined by: 
 

12

12

ff
ff

+
−

=ξ .                                                    (2.13) 

 
It is noted that the transfer function of a linear system is symmetric about the 

resonant frequency in the domain around the maximum function. 
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3. SPECIMENS, SETUP AND PROCEDURE OF LABORATORY TESTS 
 
3.1. TEST SPECIMEN 

Three identical RC beams were cast and tested in the lab. They are 20 ft long, and 
have a cross section of 15 in wide and 18.5 in deep. The concrete material used has a 
compressive strength of '

cf =5770 psi and an ultimate strain of cuε = 0.0038 in/in. The 
concrete beams are reinforced with four steel rebars, 2 No. 5 and 2 No. 6, which are 
shown in Figure 3.1. A yield strength of yf =50,000 psi (No. 5) and yf =80,000 psi (No. 
6) is specified (Mayo, 1999). No compression reinforcement was used in the beams and 
each beam is designed to fail in a ductile manner. The modulus of elasticity of 
reinforcement is sE = 2.9x107 psi.  
 
                

 
     
 

 
    

 
   (a) cross section           (b) strain                           (c
               

Figure 3.1  Beam cross
 

The ultimate moment strength of the beam
evaluated using the equivalent rectangular stress bloc
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3.2. TEST SETUP 
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maintain stability in the transverse direction, four br
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seen in Figure 3.2. 
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was connected to an electric motor by a shaft as shown in Figure 3.4. The operating speed 
of the motor was controlled by a speed-master device called a control panel. 
 

 
Figure 3.2 Anchor system of beam 

 
The vertical deflections of the beam were acquired at midspan and a quarter point 

by means of two LVDTs, while accelerations at the same locations were collected using 
two PCB seismic accelerometers. Four additional LVDTs were placed on the tension and 
compression side of the beam at midspan and a quarter point so that the curvature could 
be determined from the collected data. All LVDTs and accelerometers are deployed as 
illustrated in Figure 3.5. 
  

 
Figure 3.3 Static test setup 
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Figure 3.4 Dynamic test setup 
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Figure 3.5 Location of transducers 

 
3.3 SURFACE PREPARATION AND INSTALLATION OF CFRP SHEETS 

In this study, Beam 3 is strengthened with externally bonded Carbon Fiber 
Reinforced Polymer (CFRP) sheets (Mayo, 1999). Mbrace CF130 high tensile carbon 
tow sheets are used here (Mbrace, 1998). They are 0.0065 in. thick per ply and have a 
design strength of 550 ksi, a design strain of 0.017 in/in and a design tensile modulus of 
elasticity of 33,000 ksi. Before the installation of CFRP sheets, the beam surface must be 
prepared according to the recommendations made by the manufacturer. The bottom 
surface of Beam 3 was sandblasted to remove the laittance at the finishing surface of 
concrete. The machine used for sandblasting the beam has a capacity of more than 2500 
liter/min and a 250-pound sand pot. It was operated under an air pressure of 100 psi. The 
beam was sandblasted approximately 0.06 in deep until the aggregates of the concrete 
were exposed. Then the surface was cleaned thoroughly with pressure air for installation 
of CFRP sheets.  

A CFRP strengthening system consists of at least four components, namely 
primer, putty, CFRP sheets and saturant as shown in Figure 3.6. A thin layer of primer 
was applied to the bottom surface of the beam with a roller and was then cured. The 
primer is used to fill the microscopic holes in the concrete. 

Next, the putty was applied on the top of the primer using a trowel. The putty was 
used to fill the large hole in the concrete and make the surface level enough for placing 
CFRP sheets. It is not necessary to apply the putty before the primer is completely dry. 

LVDT 6 
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Because the bottom surface of the beam was relatively smooth and level, only a very thin 
layer of putty was applied.  

When the putty was dry enough, the first layer of saturant (resin) was applied on 
the surface. After about 20 minutes, the first carbon tow sheet was applied on the resin 
layer and another layer of resin was applied on the sheet. A plastic roller was used to 
remove the air trapped under the sheet. This procedure also helps to ensure the CFRP 
sheet is saturated in the resin. After another 30 minutes, the second layer of resin was 
applied on the surface and the above installation procedures were repeated to apply the 
second layer of CFRP sheets. 

For Beam 3, two 19 feet long and 10 inches wide plies of Mbrace CF130 tow 
sheets were used. The above procedure was followed to apply the CFRP sheets. The 
beam was left to be cured for at least one week before being tested. After strengthening 
with two plies of CFRP sheets, the strength was expected to increase by 40-50%. 

 

Protective Coating

2nd layer of Resin

Carbon Fiber

 1st layer of Resin

Putty

Primer

Concrete

 
Figure 3.6 CFRP strengthening system 

 
3.4 TEST PROCEDURE 

Each concrete beam was tested to failure statically in seven stages. For each stage, 
the beam was gradually loaded at midspan to 8, 10, 14, 18, 22, or 26 kips, respectively. 
After that, the beam was continuously loaded to failure. A series of dynamic tests were 
conducted on the beam in its virgin state and between two consecutive static tests. For 
each cycle of static and dynamic test, two steps were included: 

 
Step 1:  Statically load and unload the beam at midspan to a predetermined load level. 
Two runs were made to ensure the repeatability of the data. 
 
Step 2:  Dynamically test the beam with a sine or a swept-sine load at midspan. 

 
Steel plates were used as preload before the dynamic tests on Beam 1 and Beam 

2. The preload for Beam 1 was respectively 2*300 lb, 2*560 lb, 2*820 lb, 2*1080 lb, and 
2*1340 lb. The preload for Beam 2 was 2*1080 lb only. For the harmonic tests, a range 
of excitation frequencies were selected. Each run was carried out with one frequency and 
the dynamic tests were completed with loads of either increasing or decreasing 
frequencies in sequence. For the swept-sine test, a single dynamic load with increasing 
and then decreasing frequency was applied on the beam. 
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4. TEST RESULTS AND ANALYSIS 
 

4.1 STATIC TESTS 
Three RC beams were tested to failure using a single concentrated load at 

midspan of the beams. For Beams 1 and 2, the static load was applied cyclically twice at 
each load level. For Beam 3, strengthened with externally-bonded CFRP sheets, the static 
test was completed with one loading and unloading cycle only. The load versus midspan 
deflection curves of all three beams are respectively plotted in Figure 4.1-Figure 4.3.  
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Figure 4.1 Load versus midspan deflection of Beam 1 
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Figure 4.2 Load versus midspan deflection of Beam 2 
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Figure 4.3 Load versus midspan deflection of Beam 3 
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It is observed from Figs. 4.1 and 4.2 that crack initiates at a load of about 8 kips 
for Beams 1 and 2. The maximum moment of the beams at this load level is equal to 38 
kip-ft, which agrees well with the theoretical analysis. The first beam collapses at about 
30 kips while the second at about 26 kips. This corresponds to an ultimate moment of 
142.5 kip-ft and 123.5 kip-ft, respectively.  Both are close to the theoretical prediction 
Mu=130 kip-ft. Due to the strengthening of CFRP sheets, the third beam cracks at 18.0 
kips and fails in concrete crushing and peeling of the CFRP sheets at 34 kips. Both loads 
agree with the theoretical results. Unlike the first two beams, Beam 3 does not appear to 
have a strength plateau after yielding of rebars due to the elastic behavior of CFRP 
sheets. Overall, all beams behave nonlinearly due to cracking of concrete and yielding of 
reinforcement. 

It is of interest to know whether the beam stiffness degrades significantly. Figs. 
4.1 and 4.2 indicate that the stiffness degradation is unlikely to have taken place. A closer 
look on this issue is made by studying the two cycles of static tests of Beam 1 at the same 
load level as shown in Figure 4.4. It can be clearly seen that the slope of the load 
deflection curves has little difference between two consecutive cycles of tests. This 
confirms the early observations from the entire load-deflection curves. 

Although the dynamic load used in the tests is much smaller in magnitude than 
the static load, it may change the response of a cracked beam. Therefore, upon the 
completion of dynamic tests at the 6th stage, one cycle of static test up to the load at the 
previous stage was repeated for Beam 1. Figure 4.5 shows the load deflection curves of 
Beam 1 at the load level of 26.0 kips. Obviously, the slope of the load deflection curves 
remains the same before and after the dynamic tests, indicating little effect on the 
stiffness. The load deflection curve appears to have shifted to the right side of larger 
deflections. It was concluded that the deflection shift results from the uncorrelated 
recording of deflections before and after the dynamic tests. However, the area of the 
hysteresis loop is appreciably reduced due to the shaking in dynamic tests. This implies 
that the crack surface condition have been changed so that a significant portion of the 
energy dissipated by the internal friction force is lost. 
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Figure 4.4  Stiffness degradation of Beam 1 (Ps=14 kips) 
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Figure 4.5 Dynamic effect on beam responses (Ps=26 kips) 

 
4.2 DYNAMIC TESTS 

The first RC beam was tested in November of 1998 as a pilot study for the entire 
project. Although the dynamic test on Beam 1 was not extensive, some interesting points 
such as the preload effect, unstable vibration, and the load-history effect were observed. 
After the test, a more detailed plan for the test of Beams 2 and 3 was executed to confirm 
the findings from the first beam tests and to explore new indicators for the detection of 
damage. The second and third beams were tested in August of 1999. A complete set of 
the deflection transfer functions are attached in Appendix A, B, and C for Beam 1, Beam 
2 and Beam 3 respectively. 
 
4.2.1 Fundamental Frequency of Beams 

The fundamental frequencies of the beams or beams plus preload are identified 
from transfer functions as discussed in Section 2.4. A displacement or acceleration 
transfer function of a RC beam is determined by testing the beam a dozen of times under 
harmonic loads, each corresponding to one excitation frequency. Tables 4.1 to 4.3 list the 
fundamental frequencies of all three beams for different load cases. As one can see, the 
fundamental frequency of Beams 1 and 2 decreases significantly as the level of static load 
increases. However, the frequency of the third beam, strengthened with externally-
bonded CFRP sheets, considerably drops at the initiation of cracking and then remains 
nearly constant due to the existence of CFRP sheets. It is also observed from these tables 
that the fundamental frequency decreases as the preload goes up. 

The fundamental frequency of the beams can also be determined analytically by 
Eq. 2.1. Due to various degree of cracking, the effective moment of inertia changes along 
the span length. At a particular section, the effective moment of inertia also decreases as 
the static load increases. The effective moment of inertia is used to represent the overall 
property of the beams. It can be estimated by (ACI 318-99): 
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Table 4.1 Fundamental Frequency of Beam 1 
Static load Ps (Kips) Prelaod 

Wp (lb) 0 8.0 10.0 14.0 18.0 22.0 26.0 
0 22.50 22.00 19.35 16.60 15.40 14.50 14.00 

2*300 21.00 - - - - - - 
2*560 19.50 - - - - 12.20 - 
2*820 17.75 17.10 15.00 12.80 11.80 11.00 10.80 
2*1080 16.45 - - - - - - 
2*1340 15.25 14.80 13.30 11.30 10.20 9.80 9.70 
 
        Table 4.2  Fundamental Frequency of Beam 2  

Static load Ps (Kips) Prelaod 
Wp (lb) 0 8.0 10.0 14.0 18.0 22.0 

0 21.75 21.25 19.75 18.25 17.25 - 
2*1080 15.60 15.25 14.25 12.00 - - 

 
       Table 4.3  Fundamental Frequency of Beam 3 

Static load Ps (Kips) Prelaod 
Wp (lb) 0 10.0 14.0 18.0 22.0 26.0 

0 23.00 19.75 18.25 18.25 18.75 18.50 
 
where Mcr and Ma respectively denote the cracking moment and the applied bending 
moment, Icr and Ig represent the moment of inertia of the transferred cracked section and 
the uncracked gross section,respectively. In Eq. (4.1), the cracking moment is calculated 
by: 

2/h
If

M gr
cr =                                                                (4.2) 

 
in which fr  is the modulus of rupture, equal to '5.7 cf  and h represents the overall height 
of a beam section. Wang et al (Wang, 1998) modified the above formula for Ie into: 
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where α  is a constant varying from 1.05 to 1.15 for a cracked beam section subjected to 
the applied bending moment and from 1.35 to 1.5 for a cracked beam section without 
load. These results are based on the limited test data on simply-supported beams and may 
need further investigation for other support conditions, reinforcement ratio, concrete 
strength and size effect.  

For Beams 1 and 2 whose cross-section is sketched in Figure 3.1, the moments of 
inertia of the uncracked and cracked sections are respectively equal to Ig=7915 in4 and 
Icr=1929 in4.  
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The equivalent moment of inertia calculated from Eqs. (4.1) and (4.3) and the 
fundamental frequencies of  Beams 1 and 2 determined by Eq. (2.1) are listed in Table 
4.4. The applied moment Ma is the maximum moment at the stage for which the 
deflection and effective moment of inertia are calculated. To visualize how the natural 
frequency varies with the static load, the fundamental frequencies are normalized by that 
of the virgin beams and plotted as a function of the ratio of the static load and the 
ultimate load as shown in Figure 4.6. It is observed that the Wang�s equation of (4.3) 
leads to the analytical frequencies that are in excellent agreement with the test data of 
Beam 2 and change with static loads in the same trend as the experimental results of 
Beam 1 indicate. However, the ACI equation of (4.1) significantly underestimates the 
fundamental frequency. This is because the ACI equation is developed for the deflection 
control of beams and thus renders a conservative design. Therefore, for the purpose of 
studying the behavior of concrete beams, it is not advisable to use the ACI equation. 

 
Table 4.4    Measured and Predicted Frequency of Beams 

Static load 
(kips) 

0 8.0 10.0 14.0 18.0 22.0 26.0 28.0 Note 

Ma(k-ft) 0 38.2 47.75 66.85 85.95 105.05 124.15 133.70  
Ie(in4) 7915 7915 5287 3146 2501 2242 2119 2081 Eq. 4.1 
f (Hz) 22.34 22.34 18.23 14.08 12.56 11.89 11.56 11.45  

Ie(in4) 7915 7915 6976 5727 5033 4591 4285 4165 Eq. 4.3  
with α=1.35 

f (Hz) 22.34 22.34 20.97 19.00 17.81 17.01 16.44 16.21  
Ie(in4) 7915 7915 7027 5846 5190 6772 4483 4370 Eq. 4.3  

with α=1.5 
f (Hz) 22.34 22.34 21.05 19.20 18.09 17.35 16.81 17.00  
f of Beam 1 22.50 22.00 19.35 16.60 15.40 14.50 14.00 - Measured 
f of Beam 2 21.75 21.25 19.75 18.25 17.25 - - - Measured 
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surface of Beam 3 will take over a substantial part of the tensile stress after this stage. 
Therefore, the stiffness and frequency of Beam 3 do not change too much after that stage 
due to the elastic property of CFRP sheets up to failure. Indeed, it was observed during 
the test that after the initial cracking in concrete, cracks extended slowly with increasing 
static load. Until the last stage when the beam was loaded to a complete failure, sizable 
cracks extended quickly, causing concrete crushing and the peeling of CFRP sheets. 
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Figure 4.7 Fundamental frequency of beams 

 
4.2.2 Effect of Preload on Dynamic Signatures 

The effect of preload on the fundamental frequency of a beam can be determined 
from Eq. (2.3). The fundamental frequency of Beam 1 or 2 plus a preload is normalized 
by that of the beam alone and the ratio is shown in Figure 4.8. It is noted that Ps/Pu in 
Figure 4.8 represents the ratio of the static load on a beam and the ultimate load of the 
beam from tests. 

As indicated in Tables 4.1 and 4.2, Beams 1 and 2 are subject to severe cracking 
and possible yielding of reinforcement when a static load over 10 kips is applied. Both 
beams behave inelastically. Figure 4.8(c) also shows that the frequencies calculated by 
Eq. (2.3) agree well with the experimental results. Although both Eq. (2.1) and Eq. (2.3) 
are derived for elastic structures, their frequency ratio captures the characteristics of 
inelastic structures as well. It can also be observed from Figure 4.8 that the preload effect 
on frequency is independent of the level of load that a beam ever carries. Therefore, the 
analytical prediction by Eq. (2.3) is applicable to all cases. This is because the dynamic 
responses of the beams are smaller in magnitude than that induced by the static load. 
Such responses are not sufficient enough to completely close the visible cracks in the 
beams. Therefore, the occurrence of pounding between two sides of such cracks was not 
indicated by reviewing the response time histories throughout the tests. However, it was 
found that preloading does significantly affect the amplitude and �resonance� frequency 
of the beams as evidenced from the transfer function shown in Figure 4.9. It is indicated 
from the figure that when a static load of 81% or 96% of the ultimate load was applied on 
and then removed from Beam 1, the maximum dynamic responses of the beam without 
preload appreciably differ from each other and occur at different excitation frequencies if 
the beam is excited from low-to-high and high-to-low frequency, respectively. However, 
both the peak response difference and frequency shift are significantly suppressed as soon 
as a preload of 30% of the beam weight is applied on the beam as indicated in Figure 
4.9(b). The time history of the beam response thus becomes stable as shown in Figure 



  

 

16

4.10. This is probably because the preload can keep the micro-cracking at the tip of 
visible cracks open. The micro cracking is believed to contribute to the frequency shift 
and change in the corresponding peak response. Further discussions on this phenomenon 
are provided in Section 4.2.4. 
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(b) Beam 2 
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Figure 4.8  Preload effect on natural frequency 
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Figure 4.9  Preload effect on transfer function 
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Figure 4.10  Time history response of beam 

 
4.2.3 Damping Ratio of Beams 

Using the half-power method discussed in Section 2.4, the damping ratios of 
Beams 2 and 3 are respectively listed in Tables 4.5 and 4.6 when preload is not present. 
As implied in Figure 4.9, the damping ratios are loading history dependent and take 
different values when the beam is tested under harmonic loads in the order of increasing 
or decreasing excitation frequencies. They are presented separately in Figs. 4.11 and 
4.12. The damping ratio of a beam tested with excitation frequency increasing is always 
smaller than that with excitation frequency decreasing. Surprisingly, the damping ratio of 
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both beams, when tested with increasing frequencies, only changes slightly as the static 
load increases. On the other hand, when tested with decreasing frequencies, damping 
ratios  generally increase with the static load and those of the CFRP-strengthened beam 
change less than those of the unstrengthened beam. 

 
Table 4.5   Damping Ratio of Beam 2 

Static load (kips) 0 8.0 10.0 14.0 18.0 22.0 
ζ (%)  

with increasing Ω 
1.8 1.2 1.3 2.0 1.9 1.9 

ζ (%)  
with decreasing Ω 

1.8 1.4 1.5 3.2 3.1 3.7 

 
Table 4.6   Damping Ratio of Beam 3 

Static load(kips) 0 10.0 14.0 18.0 22.0 26.0 
ζ (%)  

with increasing Ω 1.8 1.2 1.3 1.4 1.4 1.8 

ζ (%)  
with decreasing Ω  1.8 2.2 2.0 2.3 3.0 3.1 
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Figure 4.11 Damping ratio of Beam 2 with the  

severity of damage 
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Figure 4.12 Damping ratio of Beam 3 with the  

severity of damage 
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4.2.4 Loading History Dependence of Dynamic Signatures 
 
It was observed during the test of Beam 1 that the beam vibrated in a constant 

amplitude for a short while and then suddenly dropped to a much smaller amplitude at 
certain range of excitation frequencies. Figure 4.9(a) also indicates that the transfer 
functions of the beam significantly change with the testing sequence�increasing vs. 
decreasing frequencies. In addition, these transfer functions are not symmetric about the 
�resonant� frequency in the domain of  the peak response. The jumping phenomenon, 
load history dependence and unsymmetric transfer functions are characteristics of the 
nonlinear vibration. The beam therefore experienced nonlinear vibration after severe 
cracking. 

 
Similar observations can be made from the tests of Beams 2 and 3 as shown in 

Figure 4.13. It can be seen that the transfer functions are skewed in the domain of the 
peak response to the low frequency side. The skewness of the transfer function decreases 
as the number of test increases, implying the transient feature of a newly-damaged beam. 
The frequencies corresponding to the peaks of different transfer functions vary 
significantly, indicating the dependence of the resonant frequency on the loading history. 
While the above phenomena represent the typical nonlinear vibration problem of a 
softening system, these characteristic frequencies eventually converge to a resonant 
frequency after the beam is tested in about 30 minutes. This may be attributable to the 
presence of micro cracks whose surface condition is time dependent but soon stabilized 
after a significant number of cycles of vibration tests. The beam then vibrates elastically 
as the final transfer function indicates. This phenomenon exists in both unstrengthened 
and CFRP strengthened beams.  

 
The above discussion indicates that the shift of the characteristic frequency, 

corresponding to the maximum transfer function value, is closely related to the new 
damage in a beam. Therefore, the frequency shift could be an effective damage indicator 
that is particularly useful in evaluating damage in RC structures immediately after the 
damage occurs. Unlike the natural frequency discussed in Section 4.2.1, the frequency 
shift does not depend on the accumulative damage in a RC structure over its service life 
and could have a potential impact on the development of no-baseline damage detection 
techniques. 

 
The frequency shift of Beams 2 and 3 without preload are respectively normalized 

by their corresponding natural frequencies of elastic beams. They are listed in Table 4.7 
and depicted in Figure 4.14. As one can see, the frequency shift increases with the static 
load for both unstrengthened and strengthened RC beams. More importantly, the rate of 
frequency shift is much higher when Ps/Pu exceeds 0.4~0.5 or when the beam is subjected 
to a service load (Pser/Pu=0.35 for Beam 2) or slightly higher. In addition, the normalized 
frequency shift presented in Figure 4.14 involves the subtraction and division of the three 
�resonant� frequencies measured in an identical testing environment using the same 
equipment and data acquisition. Both systematic and random errors in the determination 
of the normalized frequency shift are expected to be much smaller than those of the 
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natural frequency discussed in Section 4.2.1. Therefore, it is reasonable to conclude that 
damage occurs in a beam when ∆f/f1 is greater than (2~3)%. 
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(a) Beam 2 (Ps=18 kips) 
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(c) Beam 3 (Ps=22 kips) 

Figure 4.13 Loading history dependence of resonant frequency 
 

Table 4.7   Frequency Shift vs. Static Load 
Beam 2: RC beam 

Static load Ps (kips)  0 8 10 14 18 22 
Normalized static load Ps/Pu 0.0 0.31 0.39 0.54 0.70 0.85 
Frequency shift ∆f (Hz)  0.0 0.25 0.25 0.75 1.25 2.25 
Normalized frequency shift ∆f/f1 (%) 0.0 1.15 1.15 3.45 5.75 10.35 

Beam 3: CFRP-strengthened RC beam 
Static load Ps (kips) 0 10 14 18 22 
Normalized static load Ps/Pu 0.0 0.27 0.38 0.49 0.60 
Frequency shift ∆f (Hz) 0.25 0.5 0.5 0.75 1.75 
Normalized frequency shift ∆f/f1 (%) 1.09 2.17 2.17 3.26 7.61 
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Figure 4.14  Natural frequency shift with the  

severity of damage 
 

4.2.5 Failure Mode of Beams 
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igure 4.15 Cracks in an unstrengthened beam 
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All three beams are reinforced with two No. 5 and two No. 6 steel rebars, 
equivalent to a 0.6% steel ratio. They are underreinforced RC members. Beams 1 and 2 
are unstrengthened and Beam 3 is strengthened with 2 plies of CFRP sheets. For the first 
two beams, cracks progressed rapidly until failure after the initiation of cracking as the 
static load on the beams increased. The first crack appeared at the center of the span 
when the static load is equal to 10 kips. After that, cracks developed almost 
symmetrically about midspan. Eventually, excessive deflections were observed and the 
test was terminated. Figure 4.15 shows the flexural crack patterns near midspan 
corresponding to two static loads. For the  CFRP strengthened beam, cracks developed in 
a similar pattern at the early stage since CFRP sheets contribute little to the cracking 
moment at this stage. However, the cracks of the CFRP strengthened beam were almost 
completely closed until Ps reached 22 kips, while those in the unstrengthened beams were 
not after 14 kips of static load. As the static load continued to increase, the cracks 
extended further so that the compression zone became smaller and smaller. In the end, 
failure occurred due to crushing of concrete as evidenced from Figure 4.16. It was also 
observed that a small strip of CFRP was peeled off as seen in Figure 4.17. After peeling 
of CFRP sheets, the strengthened beam collapsed. 
 

 
Figure 4.16  Failure of a CFRP strengthened beam 

 

 

Bottom of beam
 
Figure 4.17  Peeling of a CFRP strip 

 

CFRP strip peeling
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4.3 CONCLUSIONS 
Based on the laboratory tests of the three RC beams, the following conclusions can be 
drawn: 
1. The cracking and ultimate moments determined from the test results are in good 

agreement with those calculated based on the material properties. This agreement 
indicated that the material properties obtained by the coupon tests are sufficiently 
accurate. 

2. The stiffness degradation due to the cyclic loading at constant amplitude is 
insignificant. The dynamic test between two consecutive static tests have negligible 
effect on the stiffness of the beam. However, the dynamic test does notably reduce  the 
hysteretic damping of the cracked RC beams. 

3. The effect of an additional weight on the natural frequency of a beam can be 
analytically evaluated regardless of the severity of damage occurring in the beam. This 
additional weight can effectively improve the stability of a severely cracked, simply 
supported beam. 

4. The natural frequency corresponding to the peak of a transfer function depends on the 
loading history. It is typically larger when the transfer function is determined with a 
series of harmonic tests of increasing excitation frequency in sequence. The associated 
damping ratio is smaller and changes with the severity of damage less significantly. 

5. At any state of damage, the shift in natural frequency becomes smaller as the number 
of cycles of dynamic test increases. It represents the transient feature of a newly-
cracked beam and therefore can be used as an effective indicator in damage detection 
without knowing the damage history of the beam. The maximum shift in natural 
frequency correlates very well with the severity of damage in the beam. 

6. The CFRP sheets externally-bonded to the tension face of a beam can keep cracks in 
the beam close until the sheets are ruptured or pealed off. Consequently, the natural 
frequency of a CFRP-reinforced beam reduces significantly at the initiation of 
cracking but remains nearly constant afterwards. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 

24

5.  DYNAMIC SIGNATURE TESTS OF PROTOTYPE BRIDGE DECKS 
 
5.1 INTRODUCTION 
Bridge J857 was located on Highway 72, 11 miles from Rolla, Missouri. The bridge was 

constructed in 1932 and consisted of three simply supported solid RC decks. Each 

deck was 26.0 ft long, 26.0 ft wide, 1.5 ft thick and had a skew angle of around 15 

degrees with the bridge center line. An overview of the bridge is shown in Figure 5.1.  

 

  
Figure 5.1 Bridge J857 

 
West span (Rolla side) was reinforced with near-surface FRP rods and Center 

span was strengthened with externally CFRP sheets. The third span on the east side of the 
bridge (Salem side) was unstrengthened and used as a benchmark. Since the end of 
August 1998, a series of destructive and non-destructive tests had been conducted on the 
bridge decks by the University of Missouri-Rolla and University of Missouri-Columbia 
researchers in order to validate new strengthening technologies and damage detection 
techniques, such as externally-bonded CFRP sheets, near surface mounted FRP rods and 
dynamic signature tests for detecting the overall damage in RC decks. The bridge was 
demolished in April 1999.  
 
5.2 DYNAMIC TEST 
 
5.2.1    Purpose and Significance 

Dynamic characteristics such as frequency of a structure are directly related to the 
stiffness and geometry of the structure. Any change in these structural properties will 
alter the frequency and therefore can be identified based on the observation on dynamic 
characteristics of the structure. This section is focused on the correlation study between 
the severity of damage and the change in resonant frequency as well as damping of the 
bridge decks. 

The natural frequency and damping can be extracted from dynamic test data. In 
this study, a series of forced vibration tests were conducted on Bridge J857. They require 
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a short period of time to set up in the field condition and a minimum interaction with in-
service bridges. Essentially, the vibration tests used in this study are non-destructive to 
structures and can be used to assess the structural conditions of in-service bridges by 
detecting the severity of damage in a bridge after an event such as truck collision or 
earthquake.  
 
5.2.2.   Test Procedure and Setup  

For the dynamic tests on Bridge J857, a harmonic load was generated by a shaker 
and applied at midspan along the bridge centerline. Dynamic and static tests were 
conducted in parallel. The bridge deck was gradually tested to failure in several stages 
with four hydraulic jacks. A series of dynamic tests were conducted between two 
consecutive stages of the static tests following the same procedure as used for the beam 
tests in laboratory. The acceleration responses at various points were acquired 
corresponding to different exciting frequencies. Obtained from these responses are the 
transfer functions of the measured parameters, from which the frequency and damping of 
the bridge can be identified. The changes in frequency and damping represent the 
variation of overall structural conditions. 

At the beginning of 1999, the research team at UMR decided to purchase two (2) 
data acquisition and twelve accelerometers for the dynamic tests. Unfortunately, they 
were not available yet at the time of testing on the West and Center spans. Therefore, the 
first deck (West span) was statically tested to failure without dynamic tests in between. 
For the middle deck, four accelerometers were deployed along the longitudinal and 
transverse centerlines as shown in Figure 5.2. Right before the test of the last spans, the 
data acquisition systems and accelerometers became available to the research team. All 
accelerometers were deployed on the East span as located in Figure 5.2. 

A sinusoidal load was applied at the center point as designated #2 in Figure 5.2 
for the centerspan, and at the at the midspan (#7) and the quarter point (#8) for the east 
span. A range of exciting frequencies were selected to span over the estimated natural 
frequency of the first mode of the bridge deck. Two sets of data for a transfer function 
were collected by increasing or decreasing the exciting frequencies. The purpose of doing 
so was to test the repeatability of data for the linear vibration of undamaged stage and to 
identify the dependence of  �resonant� frequency on the loading history after severe 
cracking of the deck.  

Preloads were applied before some dynamic tests to keep microcracks open. They 
are represented by twelve steel blocks with a total load of about 14% of the deck weight 
(one span). A total of five (5) cases for the center span and eleven (11) cases for the east 
span were considered during the dynamic tests. Each case corresponds to a specified 
static with or without preloading as defined in Table 5.1 with a prefix C. 
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Table 5.1    Load Cases of Dynamic Tests 
Test Date: 03/16/1999 

Static Load(Kips) 0 100 240 360 480     
Shaker: 

Center point No preload C1 C2 C3 C4 C5   
Center 
Span 

Test Date: 02/25/1999 
Static Load(Kips) 0 80 120 180 240 320 464 

No preload C2 C3 C4 C5 C8 C9 C11 Shaker: 
Center point Preload    C6 C7   

Shaker: 
Quarter point 

No preload C1     C10  

East 
Span 

 
The static and dynamic loading systems are shown in Figure 5.3. Twelve steel blocks as 
preload were moved to the bridge deck by a crane shown in Figure 5.4 and the dynamic 
responses are recorded with two portable data acquisition systems shown in Figure 5.5. 
 

 
Figure 5.3 Static and dynamic loading system 

 

 
Figure 5.4 Preloading before dynamic tests 
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Figure 5.5 Data acquisition system 

 
5.2.3    Test Results 

A complete set of acceleration transfer functions for the center span are attached 
in Appendix D. Those corresponding to Cases 1, 2 and 5 at the center point (#2) are 
presented in Figs. 5.6-5.8. In the virgin state, the fundamental frequency is around 16.5 
Hz. The second peak on the transfer function corresponding to 17.5 Hz is obtained during 
all dynamic tests except for the failure loading case (Ps=480.0 kips). A careful 
examination on the transfer functions of acceleration responses at other points also 
indicates the existence of the second peak. It is speculated that this frequency may result 
from nonuniform support at both ends of the deck. When the static load reaches 100.0 
kips, the concrete started cracking and the fundamental frequency reduced to 16.0 Hz. 
However the second frequency basically remained 17.5 Hz. When the deck was loaded to 
240 kips and unloaded, the fundamental frequency became slightly less than 16.0 Hz. The 
change in frequency as the static load increases follows the same trend as observed in 
Figure 4.7 for Beam 3 strengthened with CFRP sheets. When a static load of 480.0 kips is 
applied, the CFRP sheets started peeling and the deck cracked significantly along the 
loading line. It was observed that the fundamental frequency suddenly dropped to 15.0 
Hz. 
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Figure 5.6  Transfer function at virgin state 
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Figure 5.7 Transfer function at cracking state 
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Figure 5.8 Transfer function at failure state 

 
When the harmonic tests are conducted with an excitation frequency increasing or 

decreasing in sequence, the resonant frequency associated with the fundamental vibration 
mode slightly shifts as evidenced in Figure 5.8. This observation confirms the findings 
from the laboratory tests of RC beams as discussed in Section 4.2.4. However, the data 
collected from the field tests are very limited due to the fact that the bridge has to be 
demolished on time and is therefore made available for the dynamic tests on the center 
span for one day only. The sensitivity of the shift in resonant frequency to the severity of 
damage needs to be further verified in field conditions.  

The damping ratio of the fundamental mode is shown in Figure 5.9 as a function 
of the static load for the center span. It is roughly equal to 3% in the virgin state. As the 
static load increased, the bridge deck started cracking and therefore damping increased 
due to the energy dissipation in micro cracks. However, the damping decreased as the 
deck was close to collapse. This is likely caused by the reduction in percentage of micro-
racks as more visible cracks are developed. The overall range of damping ratio is 
between 3% and 5%. This represents the level of damping of a typical RC structure 
system. 
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Figure  5.9  Change of damping with static load 
 

More extensive tests had been carried on the east span. Unfortunately, it was 
found after the completion of the dynamic tests that the test data can not be retrieved due 
to the improper setup of data acquisition. This occurred because the new equipment was 
put in use without much chance for the members to practice. Under the pressure of 
demolishing the bridge on time, the lack of confidence on the equipment resulted in a 
painful lesson for experimental work.  
 
5.3 FINITE ELEMENT ANALYSIS 

The center span was modeled using a commercial software called SAP2000. 
Natural frequencies and mode shapes of the bridge deck were analyzed using the finite 
element method. The skew effect was also evaluated using the computer model. The 
numerical results are compared with the experimental results. 
 
5.3.1    Model Establishment 

The geometry of the bridge deck is shown in Figure 5.10. This deck is considered 
as a thin plate in the computer model as illustrated in Figure 5.11. The model input data 
are presented in Table 5.2. To simulate the actual boundary conditions, a distributed 
rotational spring of 300,000 kips-in was added along each edge of AD and BC sides. 
 
5.3.2    Analytical Results 

The mode shapes of the first four modes are depicted in Figure 5.12, and the 
corresponding natural frequencies are listed in Table 5.3. The fundamental frequency is 
16.49 Hz, which is in agreement with the experimental result. The skew effect on the 
fundamental frequency of the deck is shown in Figure 5.13. As the deck becomes more 
skewed, the frequency increases nonlinearly. For the bridge under investigation, the skew 
angle is equal to 15o. The skew effect therefore increases the frequency by 7%. 
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Figure 5.10   Geometry of the deck 
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α: Skew angle; 
a,b: Length and width; 
x,y: Cartesian coordinates; 
m,n: Symmetric axes; 
F: Vertical force at midspan; 
AB,DC: Free support; 
BC,AD; Simply supported plus 
spring constraints. 

Figure 5.11 Finite element model of 
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Figure 5.12  Mode shapes of the first four modes 
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Figure 5.13  Fundamental frequency versus skew angle 
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Table 5.2  Input Data in Finite Element  Model 
Extra mass Deck mass 

density Uniform Lumped 
Skew 

angel α 
Poisson�s 

ratio Thickness 

2.248*10-4 
lb.sec2/in4 

0.032 
lb.sec2/in2 

1.92 
lb.sec2/in 15° 0.2 17.5 in 

Boundary 
condition 
AB, DC 

Boundary 
condition 
BC, DA 

length a Width 
b*sinα 

Respect 
ratio 

b*sinα/a 
Damping 

Free 
Simply supported 

plus Spring 
constraints 

26ft 25ft 0.962 3% 

 
Table 5.3  First Four Natural Frequencies of Bridge Deck 

 
1st mode 

 
2nd mode 

 
3rd mode 

 
4th mode 

 
16.49 HZ 

 
22.92 HZ 

 
44.61 HZ 

 
55.72 HZ 

   Boundary conditions are shown in Figure 5.12. 
 
5.4 CONCLUSIONS 
Based on the dynamic tests conducted on Bridge J857 and the model analysis, the 
following conclusions can be drawn: 
1. The shift in fundamental frequency when the bridge was tested with a sinusoidal load 

of increasing and then decreasing excitation frequency was also observed as for the 
beam tests in lab. The magnitude of the shift, however, is smaller due to the 
complexity in the skewed bridge system. 

2. The fundamental frequency of a CFRP strengthened deck slightly reduces at the 
initial cracking of concrete material and then remains nearly constant until the deck 
reaches a collapsing state. This behavior is due to the fact that CFRP sheets are elastic 
up to failure as observed in the laboratory tests. 

3. The damping ratio of the concrete deck system does not change significantly with the 
severity of damage in the deck. Typically it ranges from 3% to 5%. 

4. Skewness of bridge decks tends to increase the fundamental frequency of the decks. 
For a skewed deck of 15�, the frequency increases about 7%. The fundamental 
frequency of the finite element model of the center span agrees with the test result. 
This ensures some confidence on the global feature of the computer model.  
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6. SWEPT-SINE DYNAMIC TESTS 
 

6.1 INTRODUCTION 
In the preceding sections, harmonic tests are used to determine the transfer 

function of a response quantity of RC structures. Both natural frequency and damping 
ratio of the structures can be identified from the transfer function. Frequency has been 
claimed in literature as an effective indicator to identify the severity of damage in 
structures. It was found in this study that the �resonant� frequency of the structures 
changes with the harmonic loading history if the structures are damaged severely. When a 
structure is subjected to a harmonic load and tested with the increasing or decreasing 
excitation frequencies (one frequency per test), the shift in the �resonant� frequency due 
to the different sequence of changing the excitation frequency is well corrected with the 
severity of damage. Therefore, the frequency shift is also a promising indicator for 
damage detection. 

 Each test using a sinusoidal load only contributes one point on the transfer 
function. Therefore harmonic tests are tedious and time consuming in laboratory or field 
conditions. To identify the natural frequency or the frequency shift could take more than 
one hour. Swept-sine tests are thus studied here to expedite the process. These tests can 
continuously sweep the structures� frequency in low-to-high and then high-to-low order. 
A smooth transfer function can then be drawn in a rather short period. 

Swept-sine tests have been used to identify the natural frequency of various 
structures. However, to the best knowledge of the authors, using them to determine 
transfer functions originates from this study. In what follows, some theoretical 
developments are introduced. The transfer functions obtained from the swept-sine tests 
are then modified to determine the functions corresponding to harmonic tests. The natural 
frequency and the frequency shift are finally identified. 

 
6.2 THEORETICAL ANALYSIS 
 
6.2.1 Principle 

Consider a simply supported beam subjected to a swept-sine dynamic load at 
midspan as shown in Figure 6.1. The load is generated by a shaker and can be determined 

 

 
L=20ft

P(t)

L/2

 
Figure 6.1 Example beam 

by Eqs. (2.4) and (2.5). For swept-sine tests, however, the operating frequency Ω in Eq. 
(2.4) is a function of time t. For simplicity, the frequency is assumed to linearly increase 
and then decrease with time t. That is, 

)'(2 trb +=Ω π                                                             (6.1) 
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where b is an initial frequency in Hz, and r’ is the increasing or decreasing rate of the 
operating frequency. By substituting Eqs. (2.5) and (6.1) into Eq. (2.4), we have: 

])'(2sin[)2/sin()2(1322.0)( 2 ttrbftP +×××= πθπ          (6.2) 
in which the operating speed of the shaker, corresponding to the excitation frequency in 
harmonic tests, can be expressed into:  

trbt
dt
df '2)( +=Ω=                                                        (6.3) 

For convenience, let                                         '2rr =                                                    (6.4) 
and r is the increasing or decreasing rate of the excitation frequency. Therefore the 
swept-sine dynamic load can be rewritten as: 

])
2

(2sin[)2/sin()](2[1322.0)( 2 ttrbrtbtP +××+×= πθπ           (6.5) 

For a simply-supported beam, the natural frequency of the second mode is four 
times that of the fundamental mode. Furthermore, only one concentrated load is applied 
at midspan in this study, or at the node of the second mode. The first mode thus 
dominates the dynamic response of the beam. In what following, only the fundamental 
mode is included. The deflection and acceleration of the beam are computed using the 
Duhamel�s integration method (Biggs, 1964). 

A typical acceleration response at midspan is shown in Figure 6.2. If the 
excitation frequency f is increased or decreased slowly, the acceleration response in a 
short period is similar to the corresponding steady-state response of the beam under a 
harmonic load of frequency f. They are compared in Figure 6.3. Therefore, if r in Eq. 
(6.5) is properly selected, one swept-sine test can be used to replace a series of harmonic 
tests. A complete transfer function of the acceleration at midspan can be constructed in 
one swept-sine test. To determine the equivalent peak response due to a sinusoidal load, 
the relationship between two loads needs to be established. At a particular time instant, 
the excitation frequency and amplitude of a swept-sine load can respectively be 
determined by:  

rtbf +=                                                                      (6.6) 
and 

)2/sin()](2[1322.0 2 θπ ×+×= rtbA                              (6.7) 
The corresponding sinusoidal load at time t can be expressed into: 

)2sin()(sin cftAtP +×= π                                    (6.8) 
in which 2rtc π−=  is the phase difference between a swept-sine and a sinusoidal load at 
time t. 
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Figure 6.2 Analytical response at midspan of beam under swept-sine loading 
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Figure 6.3 Response comparison under swept-sine and sinusoidal loads 

 
6.2.2 Analysis Procedure 

As indicated in Section 4, a transfer function of the response quantity of a RC 
structure under a harmonic load is used to identify the natural frequency and damping of 
the structure. Once the response of the structure subjected to a swept-sine load is obtained 
analytically or experimentally, the corresponding peak response under a sinusoidal load is 
therefore required. The procedure to determine this is rather simple as summarized 
below. 
Step 1. Select a time instant t and a small window of the structural response under a 
swept-sine load in a symmetrical domain of time t. Typically three cycles before and after 
time t are used. 
Step 2. Determine the time period of each cycle of vibration and the corresponding 
amplitude. 
Step 3. Take an average of the time periods and amplitudes determined in Step 2, 
respectively, to obtain the period or frequency and the corresponding peak response at 
time t. 
Step 4. Repeat Steps 1-3 until a complete transfer function is determined. This function is 
referred to as the unmodified transfer function. 

The unmodified transfer function represents the resonant responses of a beam 
under a swept-sine load of varying amplitude. It has to be modified to obtain an 
equivalent function under harmonic loads of the constant amplitude (Ah) for the entire 
loading period. Therefore, the modification factor can be written as  

A
AMF h=                                                       (6.9) 

and the modified transfer function is equal to MF times the unmodified transfer function 
at each frequency (f). MF  is evaluated at time t that is related to the frequency (f) by Eq. 
(6.7). 

 
6.2.3 Relationship Between Responses Due To Swept-sine And Sinusoidal Loads 

The aim of using swept-sine tests is mainly to minimize the time with reasonable 
accuracy to identify a transfer function. To understand how representative the swept-sine 
tests are to harmonic tests, the responses of a structure under a swept-sine load have to be 
related to those under harmonic loads. The shape and amplitude of a transfer function are 
primarily determined by the structural damping ratio (ζ) and natural frequency (ω1) as 
well as the increasing or decreasing frequency rate (r). Both damping ratio and natural 
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frequency are the structure�s properties and their effect on the structural responses is well 
understood (Biggs, 1964). In this report, emphasis is placed on the effect of the frequency 
rate (r). 

A RC beam described in Section 3.1 is used as an example for analytical study. 
The modified acceleration transfer function under a swept-sine load of various frequency 
rates and that under harmonic loads are compared in Figure 6.4. It can be seen that the  
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(b) r=0.144 
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(c) r=0.289 

Figure 6.4 Transfer functions from theoretical analysis 
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transfer functions of a beam under a swept-sine load of increasing or decreasing 
frequency are skewed to different sides of that under a harmonic load and their maximum 
responses decrease significantly as the frequency rate increases. However, both functions 
converge to the one under harmonic loads when the frequency rate is sufficiently low. 
Therefore, a single swept-sine test can be used to determine the complete transfer 
function as accurately as harmonic tests. The resonant frequency from the swept-sine 
tests shifts to the right of the natural frequency of the beam for the increasing excitation 
frequency and to the left for the decreasing excitation frequency part. As the frequency 
rate (r) increases, the error in resonant frequency becomes more pronounced. This mainly 
results from the delay in resonance. In harmonic tests, resonance occurs when an 
excitation frequency is tuned to the natural frequency of a beam as long as the beam 
vibrates for a sufficiently long time. However, the excitation frequency in swept-sine 
tests continuously changes with time so that resonance occurs at a later time after the 
excitation frequency sweeps through the natural frequency. It is also observed from 
Figure 6.4 that the resonant acceleration is slightly smaller for the increasing excitation 
frequency part than for the decreasing frequency part. This is because the applied force 
defined in Eq. (6.5) is proportional to the square of the excitation frequency. The 
dynamic response of a beam right before the resonance is then smaller for the increasing 
frequency part and therefore so is the maximum response in resonance. 

To quantify the relationship between responses due to swept-sine and sinusoidal 
loads as shown in Figure 6.4, the resonant frequency, resonant acceleration and damping 
ratio are studied in more detail. The error in resonant frequency is normalized by the 
natural frequency of a beam and plotted in Fig 6.5 as a function of the excitation 
frequency rate (r). It is clearly observed that the amount of shift in resonant frequency, or 
relative error, is the same for both increasing and decreasing frequency parts. The relative 
error in resonant frequency varies nonlinearly with the frequency rate. The relative error 
can be mathematically written as 

e

eswept

f
ff

f
sin

sin−
=δ                                                (6.10) 

and it is related to r by                      845.0041.0 rf =δ                                                   (6.11) 
based on the best fit of numerical data. In Eq. (6.10), fswept denotes the resonant frequency 
of a beam identified under a swept-sine load, and fsine represents the resonant frequency 
under harmonic loads or natural frequency of the beam. When fswept is identified from 
swept-sine tests, fsine can then be determined from Eqs. (6.10) and (6.11). 
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Figure 6.5 Effect of excitation frequency rate on resonant frequency 
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Similarly, the relative errors in resonant acceleration (δA) and damping ratio (δζ) 
are respectively calculated by  

                                 
e

eswept

A

AA
A

sin

sin−
=δ                                                  (6.12) 

                                  
e

eswept

sin

sin

ζ

ζζ
δζ

−
=                                                   (6.13) 

in which Aswept and Asine represent the resonant responses of a beam under a swept-sine 
and a sinusoidal load. ζswept and ζsine are the damping ratios of the beam identified from 
the respective transfer functions. Figure 6.6 shows the relative error in resonant 
acceleration as a function of the frequency rate (r). It can be seen that the error increases 
nonlinearly as the frequency rate increases for both increasing and decreasing excitation 
frequency parts, and so does the deviation between two parts. The relation between the 
error and the frequency rate can be determined by curve fitting as  

155.123.0 rAincr =δ         for increasing frequency part     (6.14) 
155.13.0 rAdecr =δ           for decreasing frequency part    (6.15) 

where δAincr and δAdecr are the resonant acceleration errors corresponding to the 
increasing and decreasing frequency parts, respectively. When Aswept is identified from 
swept-sine tests, Asine can then be determined from Eqs. (6.14) and (6.15). 
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Figure 6.6 Effect of excitation frequency rate on resonant acceleration at midspan 

 
The relation between the relative error in damping ratio (δζ) and the frequency 

rate (r) is presented in Figure 6.7.  As r increases, the error in damping ratio increases for 
both increasing and decreasing frequency parts. Their relation can be expressed by the 
following equation: 

320.1261.1 rincr =δζ        for increasing frequency part    (6.16) 
131.1230.1 rdecr =δζ       for decreasing frequency part    (6.17) 

where δζincr and δζdecr respectively denote the relative errors in damping ratio for two 
parts. When ζswept is identified from swept-sine tests, ζsine can then be determined from 
Eqs. (6.16) and (6.17). 

As discussed above and illustrated in Figures. 6.5 to 6.7, the error in resonant 
frequency, damping ratio and resonant response all become considerably larger as the 
frequency rate r increases. In order to obtain results more representatively to those under 
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harmonic loads, the frequency rate shall be limited. In addition, beating may occur when 
r is in a certain range as shown in Figure 6.8. Such a phenomenon will not be present 
under harmonic loads and thus makes it impossible to establish a relation between swept-
sine and sinusoidal tests. Based on extensive analytical results, a swept-sine test with r 
less than 0.5 seems to be a good representation to a series of harmonic tests. This 
threshold approximately corresponds to a dimensionless ratio (1000r/f1

2) of 1, in which f1 
is the fundamental frequency of the RC beam.  
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                  Figure 6.7 Effect of excitation frequency rate on damping ratio 
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Figure 6.8 Beat phenomenon (r=1.443) 

 
6.3  EXPERIMENTAL ANALYSIS 

Swept-sine dynamic tests were conducted on Beams 2 and 3. The dynamic load is 
generated by the same shaker as used in harmonic tests. The excitation frequency ranges 
from 0 to 30 Hz for all swept-sine tests. By adjusting the time to accelerate and/or 
decelerate the speed of the electric motor, various frequency rates (r) can be set for 
different cases. An instrumentation scheme similar to harmonic tests was developed and 
the peak accelerations from the tests are compared with the analytical results presented in 
the preceding section. 

 
6.3.1 Test Procedure and Plan 

The same procedure as summarized in Section 3.4 was used during the swept-sine 
tests except that the dynamic force described in Eq. (6.5) is generated and the transient 
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responses are recorded. The frequency rate was adjusted with a control panel by setting 
different acceleration and deceleration time in the frequency range (0, 30 Hz). Swept-sine 
tests were carried out for two specimens: Beam 2 and Beam 3. Several tests were run on 
Beam 2 at the virgin state. For Beam 3, six runs were done after the beam was first 
subjected to 26 kips. For all test cases, swept-sine tests were always performed after 
several cycles of sinusoidal tests had been finished. Each test case is described in detail in 
Table 6.1. 

Table 6.1   Case Descriptions of Swept-sine Tests 

Case Loading Stage Number of Tests 

1  No static load was ever applied on Beam 2. 
The beam is in its virgin state and behaves 
elastically 

5 tests were conducted. Each corresponds to a 
rising time of 30 sec, 60 sec. 100 sec, 150 sec 
or 200 sec from 0 to 30 Hz and a short 
decaying time. 

2 A static load (26 kips) was applied on Beam 3 
but it was removed during the dynamic test. 
The reinforcement in the beam is yielding. 

6 tests were carried out. Each corresponds to 
the same rising and decaying time of 10 sec, 
20 sec, 40 sec, 80 sec, 160 sec or 200 sec.  

 
6.3.2 Test Results and Analysis 

Figure 6.9 shows the acceleration response at midspan of the beam for various 
cases and frequency rates. It is obvious that the beat phenomenon has occurred in Case 2 
when r is equal to 2.792 and 2.587, respectively, for the increasing and decreasing 
frequency parts. Under other conditions, the acceleration envelope varies with time much 
more smoothly. A closeup of a small period of the response from the tests is plotted in 
Figure 6.10. As one can see, this period of response closely follows the steady-state 
response under a harmonic load. Around an instant t, one can read the time elapsed in 
each cycle of vibration. The average of the time for six consecutive cycles is considered 
as the excitation period at time t, from which the excitation frequency can be calculated. 
After a dozen of readings at various instances, the excitation frequency can be related to 
time t as illustrated in Figure 6.11 for Cases 1 and 2. Obviously, it varies linearly with 
time t as described in Eq. (6.6). Due to the high frequency decaying rate for Case 1 and 
lack of the steady-state response for increasing frequency in Case 2, that part of the 
response is not reliable and will not be discussed further. The average peak responses of 
six cycles of vibration centered at time t can also be found in the same function. Such a 
plot between the average peak response and the excitation frequency shows the 
unmodified transfer function as discussed in Section 6.2.2. The modified transfer function 
determined by multiplying the unmodified with the factor described in Eq. (6.9) is 
presented for each case in Figures 6.12 and 6.13, together with the corresponding results 
from harmonic tests. In general, the transfer function from a swept-sine test (r≤0.5) and a 
series of harmonic tests are almost identical, indicating that a single swept-sine test can 
be used to construct a complete transfer function for Case 1. For Case 2, however, the 
swept-sine tests did not capture the transient characteristics associated with the nonlinear 
vibration of cracked RC beams as pointed out in Section 4.2.4. This is primarily because 
all swept-sine tests were conducted after a series of harmonic tests. As a result, the 
transient surface condition along cracks becomes stationary and the beam actually 
vibrates in a linear fashion. A complete set of transfer functions from the swept-sine tests 
are attached in Appendix E and F. 
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Figure 6.9 Acceleration at midspan from swept-sine tests 
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Figure 6.10 Closeup on acceleration response 
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Figure 6.11 Excitation frequency vs. time 
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Figure 6.12 Transfer function for Case 1 from test results 
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Figure 6.13 Transfer function for Case 2 from test results 
 

For two cases described in Table 6.1, the resonant frequency, resonant 
acceleration and damping ratio are summarized in Tables 6.2 and 6.3 for the increasing 
excitation frequency part in Case 1 and the decreasing excitation frequency part in Case 
2. Those predicted by Eqs. (6.11) and (6.14) to (6.17) as well as the harmonic test results 
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are also included in the tables. The predicted results are supposed to be equivalent to 
those from the harmonic tests. It is observed from Tables 6.2 and 6.3 that the predicted 
resonant frequencies are indeed in a good agreement with the experimental results from 
harmonic tests. However, the predicted acceleration is larger in Case 1 and significantly 
larger in Case 2 than the corresponding experimental result from harmonic tests. On the 
contrary, the predicted damping is smaller than the test results. The main reason for the 
appreciable deviation is because the maximum response is often missed during the 
harmonic tests. This is especially so for the cracked RC beam (Case 2) due to the 
unstable condition along the crack surface. The resonant accelerations for the increasing 
frequency part in Case 1 and the decreasing part in Case 2 are modified based on the 
understanding of a typical transfer function of a linear system as shown in Figure 2.2. 
The modified acceleration and the corresponding damping ratio are also listed in Tables 
6.2 and 6.3. It can be seen that the predicted results by Eqs. (6.11) and (6.14) to (6.17) 
agree fairly well with the modified test results. This indicates that the equations of (6.11) 
and (6.14) to (6.17) are sufficiently accurate in predicting the frequency and damping of 
RC structures and their responses from a single swept-sine test. 

 
Table 6.2   Swept-sine vs. Harmonic Tests: Case 1 Increasing Excitation Frequency 
 Frequency rate 

r (Hz/sec) 

Resonant 
frequency 

(Hz) 

Resonant 
acceleration 

(g) 
Damping ratio 

Harmonic test 0 21.75/21.76a 0.625/0.66a 0.023/0.016a 

0.146 21.38/21.20b 0.646/0.66c 0.017/0.015d 

0.193 21.35/21.13b 0.649/0.67c 0.017/0.015d Swept-sine test 
0.291 21.43/21.13b 0.632/0.67c 0.017/0.014d 

Note: a. Modified results from harmonic tests 
          b. Predicted results by Eq. (6.11) from swept-sine tests 
          c. Predicted results by Eq. (6.14) from swept-sine tests 
          d. Predicted results by Eq. (6.16) from swept-sine tests 
 
Table 6.3   Swept-sine vs. Harmonic Tests: Case 2 Decreasing Excitation Frequency 
 Frequency rate 

r (Hz/sec) 

Resonant 
frequency 

(Hz) 

Resonant 
acceleration 

(g) 
Damping ratio 

Harmonic test 0 17/16.9a 0.585/0.66a 0.033/0.023a 

0.149 16.98/17.12b 0.772/0.80c 0.024/0.021d 

0.183 16.94/17.11b 0.749/0.78c 0.024/0.021d Swept-sine test 
0.366 16.94/17.24b 0.713/0.79c 0.026/0.020d 

Note: a. Modified results from harmonic tests 
          b. Predicted results by Eq. (6.11) from swept-sine tests 
          c. Predicted results by Eq. (6.15) from swept-sine tests 
          d. Predicted results by Eq. (6.17) from swept-sine tests 
 

To compare the experimental with the predicted results by Eqs. (6.11) and (6.14 
to 6.17), Figs. 6.14 to 6.16 reproduce the relative error in resonant acceleration, resonant 
frequency and damping ratio from theoretical analysis as shown in Figs. 6.5 to 6.7 
together with the swept-sine (modified) and harmonic test results for Cases 1 and 2. In 
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general, the analytical results reasonably well agree with the experimental results as long 
as the frequency rate (r) is less than 0.25. As r increases, the theoretical prediction 
significantly deviates from the test results, in particular for the resonant frequency 
identified from the swept-sine tests with decreasing excitation frequency. In light of the 
theoretical analysis discussed in Section 6.2.3 and the experimental verification above, 
we recommend that 2000r/f1

2 be less than 1.0 for practical applications. 
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Figure 6.14 Relative error in resonant acceleration from analysis and swept-sine tests 
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Figure 6.15 Relative error in resonant frequency from analysis and swept-sine tests 
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Figure 6.16 Relative error in damping ratio from analysis and swept-sine tests 
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6.4 CONCLUSIONS 
Based on the extensive analysis and experimental verification, the following 

conclusions can be drawn: 
1 When the frequency rate of swept-sine loads is sufficiently small, a single swept-sine 

test can be used to determine the natural frequency, damping ratio and resonant 
responses of a beam. Beating phenomenon appears immediately after resonance when 
a beam is subjected to a swept-sine load with rapidly increasing and decreasing 
excitation frequencies. 

2 The resonant responses, resonant frequencies and damping ratios of a beam under 
harmonic loading can be respectively predicted from Eqs. (6.11) and (6.14) to (6.17) 
based on the experimental results from a swept-sine test. These relations have been 
proved to be reasonably accurate for a low excitation frequency rate. 

3 For practical applications, the frequency rate of swept-sine loading should be limited 
to f1

2/2000 in which f1 represents the fundamental frequency of the structure under 
study. 
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7. SUMMARY AND RECOMMENDATIONS 
 

Dynamic signature tests have been conducted on three RC beams in lab and a 
solid bridge deck in field condition. One beam is strengthened with externally-bonded 
CFRP sheets. Both sinusoidal and swept-sine loads are used for the dynamic tests of 
beams. Based on this study, the following conclusions can be drawn: 

 
1. The fundamental frequency and modal damping ratio of RC beams, uncracked or 

cracked, can be identified with reasonable accuracy. The fundamental frequency of a 
damaged RC beam can be well correlated with the severity of damage and can 
therefore serve as an effective indicator for damage detection. 

2. Dynamic signatures (natural frequency and damping) of a newly damaged RC beam 
are time dependent but can be easily identified by applying a preload on the beam 
during the tests. The net effect of the preload is to keep micro-cracks in the beam 
open during the vibration tests. 

3. Two transfer functions of a newly damaged beam significantly differ from each other 
in magnitude and shape when the beam is tested under a harmonic load with the 
excitation frequency increasing vs. decreasing in sequence. Their corresponding 
resonant frequencies and damping ratios are also quite different. The shift in resonant 
frequency significantly increases with the severity of damage and responds to the 
unstable surface condition along micro cracks. This frequency shift is thus a 
promising indicator for detecting and locating the damage in RC structures when the 
structure condition is unknown before the test. The damping ratio of the beam is 
larger when tested with the decreasing excitation frequency. The similar trend in 
frequency shift has been observed in the bridge test but the magnitude of the shift is 
significantly smaller due to the complexity of a skewed deck system. 

4. The derived theoretical formula accounting for the preload effect is in excellent 
agreement with the test data regardless of the state of damage occurring in RC 
structures. The theoretical prediction on the fundamental frequency using the 
equivalent moment of inertia also agrees very well with the experimental results. 

5. The fundamental frequency of a CFRP strengthened beam considerably decreases at 
the initiation of cracking in concrete material and then remains nearly constant until 
the beam completely collapses. This behavior is due to the fact that CFRP sheets are 
elastic up to failure. This observation has been verified the bridge test even though it 
is less obvious. On the other hand, the fundamental frequency of RC beams without 
CFRP strengthening decreases continuously as the beams experience concrete 
cracking, reinforcement yielding and a complete failure. 

6. The damping ratio of the tested RC beams ranges from 3% to 4% while that of the 
bridge deck system is about 3-5%. 

7. The fundamental frequency of the bridge deck from the computer model matches 
with that from the bridge test. The skew effect of Bridge J857 on the fundamental 
frequency is about 7% based on the computer simulation. 

8. A single swept-sine test can be conducted to replace a series of harmonic tests. 
Therefore, tremendous time and effort can be saved by using swept-sine tests to 
determine the transfer function of RC structures in laboratory and field applications.  
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9. The relations between the transfer functions from harmonic and swept-sine tests are 
established analytically and validated through test data. They can be used with 
reasonable accuracy to determine the resonant response, resonant frequency and 
damping ratio of a structure from the experimental results of a swept-sine test. 

10. To ensure the accuracy in the identification of eigenproperties of structures, it is 
recommended that the frequency rate used in swept-sine tests be less than f1

2/2000 for 
practical applications.  

 
As a feasibility study on the dynamic signature tests, this project fulfills its 

original goal. However, further investigations are required to verify how to effectively 
use the fundamental frequency for the damage detection of other RC structures and to 
fully develop the new damage indicator, frequency shift, for newly-damaged structures. It 
is also critical to develop a theoretical model for analyzing a moderately-damaged RC 
beam that is subjected to strong nonlinear vibration under harmonic loads. For practical 
applications, it is pertinent to use a swept-sine test to determine the shift in resonant 
frequency. Future research will be pursued in these areas. 
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APPENDIX  D:  

 TRANSFER FUNCTIONS OF BRIDGE J857 
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TRANSFER FUNCTIONS OF BEAM 3 FROM SWEPT-SINE TESTS 
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